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Thèse

présentée par

Lucia Alianelli

Pour obtenir le titre de docteur
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Introduction

Les sources de neutrons prévues pour le nouveau millénaire fourniront un flux sans

précédent qui pourra être utilisé dans de vastes domaines, de la recherche fondamentale à

l’industrie. L’instrumentation liée à ces sources inclut des éléments optiques complexes et

chers. Par conséquent, il est souhaitable de modéliser et simuler exactement ces dispositifs

afin d’optimiser leur fonctionnement et coût.

Les neutrons sont une sonde fondamentale pour l’étude de la physique de la matière

condensée, de la chimie et de la biologie. Les arrangements des noyaux dans la matière

sont étudiés dans des expériences de diffraction en analysant la dépendance angulaire du

faisceau de neutrons diffracté par l’échantillon. Le diffractomètre le plus simple est un

instrument à deux axes : le cristal monochromateur, placé sur le premier axe, sélectionne

l’énergie ; le mouvement du deuxième axe (axe de l’échantillon et/ou du détecteur) permet

d’enregistrer les spectres angulaires.

Dans les expériences en temps de vol, la direction du faisceau incident est fixe et la

monochromatisation est achevée par des dispositifs mécaniques, comme des choppers. Ces

dispositifs sélectionnent des bandes de longueur d’ondes en exploitant la vitesse réduite

des neutrons thermiques (liée à leur énergie).

Les spectres énergétiques des excitations dans la matière solide et molle peuvent être

étudiés par la dispersion non élastique et quasiélastique des neutrons : un spectromètre

typique est le trois axes dans lequel le troisième axe correspond au cristal analyseur. Il

y a également des spectromètres basés sur l’utilisation soit de cristaux soit d’éléments à

temps de vol.

Un grand nombre d’instruments de neutrons sont équipés avec des collimateurs et des

cristaux. Les collimateurs sont des assemblages faits avec les lames absorbantes, qui

réduisent la divergence et améliorent ainsi la résolution angulaire. Le cristaux monochro-

matisent les faisceaux de neutrons selon la loi de Bragg λ = 2 dh sin θB.

Les cristaux focalisants, en outre, augmentent l’intensité à l’échantillon. Des méthodes

plus spécifiques sont employées quand une résolution d’énergie plus élevée est nécessaire.

La monochromatisation d’un faisceau par des cristaux en rétro-diffusion permet une

résolution d’énergie de ∼ 1 µeV. La technique de l’écho de spin, basée sur la mesure

du déphasage entre les ondes de deux états de rotation du neutron dans un champ

magnétique, permet une résolution d’énergie de ∼ 1 neV.

Le spin de 1/2 des neutrons implique qu’ils peuvent être employés pour des investiga-

tions du spin nucléaire. D’ailleurs, le moment magnétique du neutron interagit avec le

moment magnétique des électrons permettant la mesure des structures et des excitations
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magnétiques. Pour ces expériences, les dispositifs utilisés pour détecter la polarisation des

faisceaux sont les suivants : cristaux magnétiques de Heusler, champs magnétiques non

homogènes, multicouches magnétiques, filtres d’hélium basés sur l’absorption sélective des

neutrons dans des états de spin différents.

Les sources de neutrons produisent des faisceaux isotropes et dans des domaines de

longueur d’ondes relativement grands. Ces faisceaux doivent être transportés, puis monochro-

matisés et collimatés. Le degré de monochromatisation et de collimation dépend de la

résolution et de l’intensité nécessaires à l’expérience. Une intensité élevée et une bonne

résolution sont deux conditions contradictoires : par exemple, une bonne résolution an-

gulaire peut être réalisée en utilisant des collimateurs qui réduisent l’intensité. Dans

beaucoup de cas, le dessin final de l’instrument est un compromis entre l’optimisation de

l’intensité et de la résolution.

La technique la plus utilisée pour choisir une bande ∆λ de longueur d’onde à partir du

faisceau incident est basée sur la diffraction de Bragg par un cristal. Il y a également

des monochromateurs faits par des multicouches : ils produisent des réflectivités intégrées

élevées et sont employés particulièrement quand des paramètres de maille élevés sont

nécessaires. Les multicouches ont l’avantage de pouvoir être fabriqués avec des paramètres

de maille et, dans certains cas, des matériaux plus adaptées au besoins expérimentaux.

Cette discussion montre qu’il y a une variété d’instruments de neutrons dans lesquels

la combinaison d’éléments différents peut être très complexe. Le grand effort technique

et économique requis pour construire ou remplacer un instrument exige de connâıtre

précisément la fonction de chaque élément optique. D’ailleurs, l’amélioration (en termes

d’intensité, par exemple) d’un élément optique, tel qu’un cristal ou un multicouche, ne

peut être comparé à celui nécessaire pour augmenter l’intensité de la source. Ce sont les

raisons de l’importance de modéliser les éléments optiques de neutrons.

Un des objectifs de cette thèse est celui de contribuer à la description et à la simulation

des instruments de neutrons, en particulier de cristaux imparfaits qui sont habituellement

utilisés comme monochromateurs ou analyseurs. On sait que la réflectivité expérimentale

de cristaux réels est souvent en désaccord avec celle calculée en utilisant les modèles

analytiques standard. Notre but est de : 1) étudier les méthodes existantes et définir leurs

limites d’applicabilité pour calculer la diffraction par des cristaux réels. Ceci implique un

travail expérimental pour la mesure des profils de réflectivité dans les meilleures conditions

possibles en termes de qualité du faisceau incident; 2) développer de nouveaux algorithmes

de simulation Monte Carlo donnant une description réaliste de ces cristaux.



Chapter 1

Introduction

Neutron sources under development for the new millennium will provide unprecedented

neutron beam fluxes for applications covering a wide range of pure and applied science and

industrial research. The instrumentation associated with these sources includes complex

and expensive optical elements. Therefore, it is highly desirable to accurately model and

simulate these devices in order to achieve an optimum design in terms of performance

and cost. At the same time a big effort in refurbishing instruments is being made in some

neutron laboratories operating ”old” neutron sources. One example is the ILL Millenium

Programme [1] in which the renewal of existing instruments and the building of new ones

is upgrading the facility with the most advanced neutron optics technology (supermirror

guides, polarizing devices, focusing monochromators).

Neutrons are a fundamental probe for the study of condensed matter physics, chemistry

and biology. The spatial arrangements of nuclei in ordered and disordered matter is

investigated in diffraction experiments by studying the angular dependence of the neutron

beam scattered by the sample. The most simple diffractometer is a two axes instrument

in which the crystal monochromator, placed on the first axis, selects the energy and the

angular scans are recorded by moving the sample and/or detector (second axis). In time

of flight instruments the incoming beam angle is fixed and the beam is monochromated

by a mechanical device, exploiting the fact that the low speed of thermal neutrons (linked

to energy) allows selection of energy using rotating choppers. The energy spectra of

excitations in solid and soft matter can be investigated with inelastic and quasielastic

scattering: a typical spectrometer is the triple axis instrument in which the third axis

holds the crystal analyser. There are also spectrometers based on the combination of

crystal and time of flight optical elements. Almost all neutron instruments are equipped

with devices such as collimators and crystals. Collimators are made of thin channels

with absorbing blades, which reduce divergence and thus improve the angular resolution.

Crystals monochromate the neutron beam according to the Bragg’s law λ = 2 dH sin θB,

9
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with dH being the d-spacing of the diffracting planes and θB the Bragg angle. Focusing

crystals, in addition, increase the intensity at the sample. More specific methods are used

when high energy resolution is needed. Beam monochromatization by crystals at almost

normal incidence allows high energy resolution, based on the fact that the wavelength

range selected by the crystal is ∆λ/λ = ∆dH/dH + cot θB∆θ ∼ ∆dH/dH, thus giving a

resolution of approximately ∼ 1 µeV. The spin-echo technique, based on measurement of

the phase shift between the waves of two spin states of the neutron in a magnetic field,

allows an energy resolution of ∼ 1 neV.

The neutron has a spin of 1/2 which implies that neutron scattering is spin dependent

and can be used for investigations of nuclear spin. Moreover, the neutron magnetic

moment interacts with the magnetic moment of electrons thus allowing the measure of

magnetic structures and excitations. For these experiments, instrumentation aiming at

modifying and detecting the polarization of the beams is used: Heusler magnetic crystals,

inhomogeneous magnetic fields, magnetic multilayers and polarizing helium filters based

on the selective absorption of neutrons with different spin states are some of the methods.

Neutron sources produce neutron beams with isotropic intensity distributions and with rel-

atively large wavelength bands. These beams have to be transported and then monochro-

mated and collimated before reaching the sample. The degree of monochromatization

and collimation depends on the resolution and intensity needed for the experiment. High

intensity and resolution are two contrasting requirements: for example high angular res-

olution can be achieved using collimators which remove neutrons from the beam thus

decreasing intensity. In many cases the instrument design is a compromise between the

optimization of intensity and resolution. The most widespread technique used for select-

ing a wavelength band ∆λ from the incident beam is based on Bragg diffraction from a

given set of lattice planes in a single crystal. There are also monochromators made of

multilayers: they show high integrated reflectivities and are used especially when high

d-spacings are needed. The advantages which multilayers offer with respect to crystals is

that they can be manufactured with d-spacings, and in some cases materials, which fit

the experimental needs. Instruments exploiting the time of flight technique can be based

on mechanical tools such as phased choppers and Fermi choppers.

This discussion shows that there are a variety of neutron instruments in which the combi-

nation of elements can be very complex. The large technical and economical effort needed

to build or renew an instrument requires us to have a precise and accurate idea of the

effect of each element on the neutron beam and the combination between them. Moreover,

the cost needed for improving (in terms of intensity, for example) a given optical element

such as a crystal or multilayer, cannot be compared with that needed to increase the

source intensity. These are the principal reasons for the importance of modelling neutron

optical elements.
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One of the aims of this thesis is to contribute to the description and simulation of neutron

instruments, in particular of the crystal element, which is usually the ”heart” of a neutron

instrument. It is known that the experimental reflectivity of real crystals often disagrees

substantially with that calculated using standard analytical models. Our goal is twofold:

1) To study existing methods and define their limits of applicability to predict the diffract-

ing properties of real crystals. This implies experimental work for recording reflectivity

profiles in the best conditions in terms of incident beam. 2) Develop new Monte Carlo

algorithms aimed at giving a description of reflectivity and related parameters as close as

possible to the experimental values.

In the rest of this Chapter we will give a review of the general models used for describing

optical elements (section 1.1) and then introduce the differences and complementarity

between analytical, graphical and numerical methods. Section 1.2 is an introduction to

non-perfect crystals and their use in neutron instrumentation: this thesis will be focused

on them. Finally, in section 1.3, a short account of the development of ray-tracing packages

for simulating complete neutron instruments is given.

An important part of this thesis looks into the detailed modelling of crystal monochro-

mators and analyzers. In Chapter 2 we review the analytical models which describe

diffraction and absorption by crystals and show typical reflectivity, transmission and ab-

sorption curves calculated using the computer codes that we have developed. From the

practical point of view, these models have been implemented in a friendly computer en-

vironment, the software package XOP [2], and a dedicated version for neutron optics will

be made available [3] to the scientific community.

In our opinion, modelling of a complete neutron instrument can be done in several stages:

as a first step one can make a pre-calculation of the effect of the individual optical elements.

For this, the XOP for neutrons code that we have developed, can help. It contains

all the crystal models described in this thesis. More precise calculations are usually

made by means of Monte Carlo methods: in Chapter 3 we present an original simulation

tool for describing Bragg diffraction by crystals in a realistic way. The novelty of our

method consists in the accurate microscopical description of the interaction of the ”rays”,

representing the neutron beam, with the microscopic crystal regions. The difference with

respect to other ray-tracing crystal modules is that our code calculates the full history

of the rays and does not use any average or macroscopic law. Thus it is very realistic,

allows an accurate control of all the calculation parameters and can also be used for

crystals having any kind of distortion, for example inhomogeneities. In the same Chapter,

applications of the possible uses of the code are given, for example the different behaviour

of mosaic and bent crystals, or the calculation of important quantities such as multiple

scattering. A full benchmarking of the code against analytical models is made for some

well defined cases, with monochromatic and collimated incident beams. Our code can
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represent a crystal module for instrument simulations, and we have used it for calculating

the efficiency and resolution of the new Strain Imager instrument which is being built at

the ILL. The resulting intensity and resolution, using a mosaic bent germanium crystal

as monochromator, are summarised in Chapter 4. Another important feature of the code

is that one can monitor the ray properties at any stage of the calculation, and it allows

computation of images of the beam which can also be measured in an experiment, such as

topographs. The comparison between the measured and simulated topographs for copper

and germanium non-perfect crystals will be reported in Chapters 5 and 6.

In order to compare the calculations to the diffraction properties of real crystals we

have studied experimentally the neutron and x-ray reflectivity of copper, germanium and

graphite non-perfect crystals. In Chapters 5 and 6 we present the experimental results and

discuss the advantages and disadvantages of current models for interpreting the results.

1.1 General methods for modelling neutron optical

elements

A generic distinction between models for the description of neutron optical elements is

obtained by classifying them as graphical, analytical and numerical.

The graphical methods allow an intuitive understanding and prediction of optical compo-

nents: the so-called DuMond [4] diagrams used for the interpretation of wavelength-angle

diagrams after diffraction by a system of two or more crystals and the acceptance dia-

grams describing the transfer function of other modules such as guides or phased choppers

[5]. In Bragg diffraction, the wavelength λ and the reflection angle θ are to be consid-

ered as independent variables because of the non-zero width of the angular diffraction

profile of crystals. Then, in a (λ, θ) diagram, the Bragg’s law is represented by a band (or

blurring), rather than a segment, due to the Darwin width or to mosaicity. This simple

consideration makes the interpretation of the combined effect of two or more crystals very

easy: the final diagram will be given by the intersection of the diagrams of two or more

crystals.

Acceptance diagrams are widely used in the design of optical elements such as neutron

guides and mechanical velocity selectors [5]: the transfer function of the optical element

under consideration is written as a product of functions each depending on a variable

or group of variables such as coordinates, angles, wavelength and time. This method

is very well suited to the calculation of the beam passing through apertures or phased

disk choppers in high resolution time of flight spectrometers. It has also been applied

to the calculation of guide illumination by a given source and to the prediction of the
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performance of converging and supermirror guides. This is also called the phase-space

method as the analysis is done in a multidimensional space (coordinates, angles, energy).

The DuMond analysis can be considered as a two dimensional acceptance diagram in the

variables (λ, θ).

In the case of bent crystals, the graphical approach becomes a matrix-approach [6]: the

neutron state before diffraction is specified by the spatial and angular coordinates and also

by the relative wave-vector deviation; the neutron state after diffraction is found by simply

applying the lens equation where the focal length is a function of the crystal bending

radius, of the Bragg and asymmetry angles. This method uses the approximation that

the coordinates describing the neutron state in the two planes (parallel and perpendicular

to the diffraction plane) are not correlated. Moreover, the crystal thickness and mosaicity

are neglected, as well as the aberrations (chromatic and geometrical) produced by the

focusing surface.

Analytical methods are generally used for calculation of the resolution in neutron scat-

tering experiments [7, 8]: the effect of Soller collimators, mosaic monochromators, and

analysers are usually described by Gaussian functions with characteristic widths in the

horizontal and vertical planes; the sample cross-section is then convoluted with these

”transmission” functions.

Ray-tracing and Monte Carlo are numerical methods used when a more detailed descrip-

tion is needed both for designing or up-grading neutron instruments and when calculating

the experimental resolution. Almost all simulation codes, which will be mentioned in the

next section, work using the sequential ray-tracing method. The source, i.e. the starting

point for the simulation, is generated by random sampling the ray distribution (in terms of

energy, position and angles). The other elements are modelled assuming that the neutron

tracks are linear (or parabolic, if gravity is included) segments between one element and

the next. At each instrument stage, the neutron trajectory is modified according to a

macroscopic law governing reflection/transmission/diffraction by this element.

Let us consider the simulation of diffraction by a mosaic crystal as represented in Fig. 1.1.

The crystal is composed of an agglomeration of small perfect crystallites with their angular

orientation following a distribution W (θ, φ) not shown explicitly in the figure. The ray-

tracing calculation of diffraction by this crystal uses a macroscopic approach [9, 10, 11]:

1) the particle penetration depth τ is sampled by a probability distribution depending

on the secondary extinction and absorption depths; 2) the value of the angle θ formed

by the Bragg planes and the emerging particle is sampled using the W distribution and

considering that the Bragg’s law must be satisfied; the emerging angle ψ is determined by

θ and by the the asymmetry angle between the Bragg planes and the crystal surface; 3) the

azimuthal angle φ is also calculated by using W , or a constant probability distribution if
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the W distribution is isotropic, i.e. not dependent on φ; 4) finally the probability or weight

of the emerging particle being diffracted is sampled from analytical formulas depending

on the absorption coefficient, strenght of the reflection, Debye Waller factor etc.

The use of the Monte Carlo method for the mosaic crystal, sketched in Fig. 1.1 (right),

does not require any assumption on the macroscopic laws mentioned above. Monte Carlo

simulations can provide numerical solutions of the equations describing the transport of

neutrons or x-rays in crystals. For example, this means that the Darwin’s equations,

that govern the reflectivity of mosaic crystals, can be numerically solved by using the

Monte Carlo technique. The input parameters are the crystal geometrical and physical

properties (size, set of Bragg planes, W distribution, size of the perfect domains and,

if necessary, imperfections). The particle trajectory is followed step by step: each step

represents the interaction with a small perfect crystallite and this interaction is governed

by the laws of dynamical diffraction. We have discussed the two different approaches for

the case of a mosaic crystal because this is usually the optical element that requires a full

physical description in a neutron instrument. We have used the Monte Carlo method and

developed an original computer code for mosaic crystals which also includes other kinds

of deformation (i.e. bending). By definition, Monte Carlo methods permit modelling of a

large range of phenomena that are difficult to describe otherwise. For example, in the case

of crystals, the effect of inhomogeneities in the mosaic structure can be simulated. Our

code will be extensively described in Chapter 3: it will be shown that it can be inserted

as a crystal module into any neutron (and also x-ray) ray-tracing program. Moreover, it

can be used for calculating other important parameters, such as the number of scattering

events in a non-perfect crystal, which cannot be determined analytically. Knowledge of

this quantity is important expecially, when computation of the crystal efficiency as a

monochromator for high resolution instruments is needed.

Figure 1.1: Schematic representation of modelling diffraction by a mosaic crystal: ray-

tracing (left) and Monte Carlo method (right).
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1.2 Crystals for neutron monochromators

The first requirement for the choice of material for a crystal monochromator is that

the coherent scattering cross-section be the dominant part of the total cross-section and

that other contributions such as incoherent scattering, nuclear absorption and inelastic

processes, contributing to background and absorption, are negligible. Since relatively

large crystals (volumes of about 50 cm3) are needed, the use of isotopes is practically

impossible because of the cost.

Another important parameter for the choice of material is the value of the d-spacing: the

mosaic crystal reflectivity is proportional to the square of the scattering length density,

so the unit cell volume has to be kept small, but at the same time the d-spacing has to

be appropriate for the value of wavelength and suitable Bragg angles.

Perfect crystals are not suitable in most cases because of their narrow angular acceptance.

Therefore, crystals with some kind of ”imperfections” or ”distortion” of the Bragg planes,

have to be considered. The most common imperfections are those due to the so-called

mosaicity, i.e. the misorientation with respect to the nominal direction of the crystal

perfect blocks. In the next Chapters we will point out that, except for some materials

such as highly oriented pyrolitic graphite, the mosaic structure of real crystals (usually

artificially obtained) differs significantly from the homogeneous distributions assumed in

theoretical models. The case of mosaic copper was pointed out in the 1970’s by Schneider

[12] and Freund [13] who used γ-rays for measuring the real mosaic distribution: they

found that this was not a smooth Gaussian or Lorentzian distribution but rather an

irregular one.

Among flat mosaic crystals, those used often are copper and highly oriented pyrolitic

graphite: we will present some experimental results on their diffraction properties in

Chapters 5 and 6. Beryllium is also a very good candidate as a neutron monochromator

because of the small incoherent scattering and nuclear absorption cross sections, high co-

herent scattering length density and high Debye temperature. The drawbacks are that it is

difficult to produce mosaic crystals, and its hcp structure makes its deformation behaviour

very complex. Moreover, the toxicity of beryllium requires special care and equipment for

the growth and preparation stages. However, beryllium crystals with suitable mosaicity

have been obtained by assembling plastic deformed wafers [14].

Finally, bent crystals are used both for increasing the flux at the sample via spatial focus-

ing and for achieving a better resolution via focusing in reciprocal space. However, phase-

space volume conservation as stated by the Liouville theorem puts limitations on the use of

focusing, which is suitable only for a limited number of samples investigated. When large

samples are studied, and the resolution requirements are not so stringent, large copper
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mosaic monochromators are preferred. Elastically bent perfect silicon monochromators

have been implemented successfully in neutron diffraction, both for the measurement of

strain in materials [15] and in triple axis instruments [16].

Bent perfect germanium would give higher relectivity than silicon and efforts are being

made in several neutron laboratories to obtain plastically bent germanium. In Chapter 6

we shall present some results concerning a bent germanium crystal.

Other crystals are used in back-scattering geometry: one example is the calcium fluoride

monochromator of IN13 at the ILL [17]. Natural mica is used for the monochromatization

of cold neutrons [18] or as an analyzer in low-energy inelastic spectroscopy [19]. The

neutron reflectivity of mica crystals with different compositions has been studied by Crow

[20]. The large d-spacing allows their use as ultracold neutron monochromators. The

presence of several orders of reflection having high structure factors allows the extension

of the applicability range. Moreover, high quality bent crystals can be obtained [21].

In Chapters 5 and 6 the experimental results for a wide range of non-perfect crystal sam-

ples (copper, germanium and graphite) and their comparison with theory will be discussed.

The aim of the experimental tests was to address the limitations in applicability of the

theory and the differences between real and ideal crystals. The samples we used were of

good quality, produced for use as parts of monochromators, and previously characterized

by other techniques. Therefore they should produce results close to the best avalaible.

Our experiments were performed with both neutrons and x-rays. As will be shown in

Chapter 2, the equations governing neutron and x-ray Bragg diffraction by crystals, are

the same. Moreover, the use of neutrons and x-rays produced by synchrotron radiation,

give complementary information on the reflectivity and homogeneity of the crystals we

have analyzed.

1.3 Computer simulation of neutron instruments. An

overview.

The increasing number of neutron simulation programs produced recently reflects the

efforts of the neutron community to push the performance of instruments, which are

already in use or are under construction. Some of these codes are programmed for specific

classes of instruments and they allow a precise computation of the response in terms of

resolution and intensity: one example is the Restrax program [22] implemented for triple

axis spectrometers. On the other hand, multi-purpose, Monte Carlo transport and ray-

tracing codes provide a collection of optical elements which can be assembled to simulate

any kind of instrument. The Los Alamos Monte Carlo code NISP [23], with its Web
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library and interface [24], has been under development for about 20 years and provides

a collection of optical elements and pre-defined instruments. The Vitess package [25, 10]

is specially designed for the simulation of instruments at the future European Spallation

Source. The McStas code [26, 27] is widely used, flexible and well supported.

The standard simulation tool used by the x-ray community is the Shadow code [28, 29]:

it allows the simulation of a complete x-ray instrument and the detailed description of

synchrotron sources, and of a large range of focusing and/or diffracting devices such as

crystals, multilayers and gratings. In this thesis we have used the Shadow capability

to generate sources with different geometries, then inserted our Monte Carlo codes for

simulating non-perfect crystals, and finally used the powerful graphical tools implemented

in ShadowVUI [2] for analyzing the simulation results.

The packages mentioned above are often used as black boxes whose output gives the

user the response of a complex instrument in terms of neutron flux, angular and spectral

resolution. In many cases, the ray-tracing or Monte Carlo calculations involve many

elements (crystals, collimators, samples, detectors, etc.) and the final result is influenced

by all these elements. It can be difficult to address the individual effect of each component

when wanting to analyse the final result. The final accuracy depends on the precision

used to describe the individual components. Therefore, a possible approximation in the

simulation of one of the elements affects the accuracy of the result. Hence the code

reliability depends on the models used for simulating the source and the components and

also on the statistical error inherent to any Monte Carlo simulation. It may be difficult

to explain the origin of some results and, more importantly, to address the problem

of their reliability. Ray-tracing and Monte Carlo methods should be used for accurate

computations, after considering the possible use of analytic or graphic approaches. It is

crucial to verify the precision of the description of each optical element before modelling

the complete instrument and understand the effect of each component.

The starting element in a simulation is the source. It contains all the information on the

neutrons at a given starting region: energy, position, direction, probability of presence

(or weight). The exact computation of the neutron spectra emitted by a reactor or a

spallation source cannot be performed analytically. In practice, the source characteristics

can be input in three ways: 1) From direct measurements of flux. 2) Using data coming

from a Monte Carlo particle transport simulation of the reactor core, beam tube and

shielding materials (an example is MCNP [30, 31], developed at the Los Alamos National

Laboratory and containing neutron cross-sections in a wide energy range). 3) Using geo-

metrical models, such as used in McStas (simple geometrical and energy distribution with

an euristical time distribution in the time of flight case) and Vitess (Maxwellian distribu-

tion from the moderator and pulse shape function of input parameters). A development

of a database containing experimental and calculated (e.g. Monte Carlo) sources would
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be desirable for a ray-tracing simulation. Careful modelling of the source is also of great

importance for the final result. The geometry and divergence of the neutron beam at the

starting point of the instrument define the shape of the phase-space that will be trans-

formed by the optical elements. Therefore, the simulation results depend on the source

characteristics, and the problem of designing and optimising the instrument is reduced to

preserving its brightness (i.e. the neutron flux per solid angle per unit of energy) whilst

minimizing losses. The lack of analytical models describing neutron sources (reactors and

spallation sources), and the poor quantity of data avalaible (measured and calculated),

represent a limiting factor for the reliability of the simulation results. For this reason,

a considerable effort should be made in the field. On the contrary, synchrotron sources

(bending magnets, wigglers and undulators) can be exactly computed using analytical

functions and ray-tracing is a well established method in this field.

Among the optical elements, one can distinguish those having a geometrical role (such

as slits and Sollers) and others having more physical effects requiring a description in

terms of reflectivity or transmission: multilayer and supermirror guides, filters, attenua-

tors, crystal monochromators and analysers. The creation of a database containing the

measured response of real optical elements would serve as a base for real reflectivities and

a benchmark for ab-initio simulations (i.e. simulations in which the measured properties

such as reflectivity or transmission profiles are inserted in the calculations instead of the

theoretical profiles).

A debated question is the transport of polarized neutrons and the description of those ele-

ments which are concerned with the state of polarisation of the beam: Heusler monochro-

mators, magnetic multilayers, polarising filters. A method for tracing thr neutron spin

in a simulation program dealing with polarised neutron scattering is described by Seeger

et al. [32] and makes use of the Bloch’s equations for the precession of neutron spin in a

magnetic field.

Simulation of the scattering properties of the sample is often required, both when cal-

culating the instrument resolution or the flux which is expected to hit the detector. In

order to simulate the sample one can simply use an effective source in its place or insert

a detailed description of the S(q, ω) as obtained by calculation or experiment. We recall

that S(q, ω) represents the probability for the neutron to undergo an energy change h̄ω

at a wave vector transfer q, while interacting with the sample.

Finally, it is often desirable to include the detector resolving power and point spread

function in the simulations. However, these effects can be calculated by post-processing

the ideal results produced by ray-tracing.



Chapter 2

Analytical models for mosaic,

gradient and bent crystals

This Chapter contains a review of the models describing neutron diffraction and absorp-

tion by perfect and non-perfect crystals. Our contribution in this field was the implemen-

tation of the analytical formulas for crystal reflectivities, transmission and absorption in

numerical codes.

2.1 Introduction

There are two methods which may be used to account for the intensities observed in

neutron and x-ray diffraction by crystals. The kinematical theory describes the transport

of intensity in a crystal and treats the scattering from each volume element as being

independent on that of other volume elements, except for incoherent power losses in

that particular volume element. The dynamical theory, instead, completely describes the

wave amplitude, and takes into account all wave interactions within the crystal volume

elements: it considers the total wavefield inside a crystal while diffraction is taking place

as a single entity. In other words, it accounts for the strong coupling between the incident

and diffracted beams and the continuous energy exchange between them. Intuitively, the

dynamical theory has to be used when the size of the perfect crystal or the strength

of the reflection are not negligible. In other cases, as for example for fine powders,

both theories lead to the same expression for the diffracted intensity, although primary

extinction corrections (which are a dynamical diffraction effect) have to be included when

measuring strong reflections. One of the drawbacks of the kinematical theory is that it

violates energy conservation because it does not take into account multiple diffraction. So

it is valid only in the very small crystal limit. If we denote by d the crystal thickness and

19
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text the primary extinction depth (which represents the perfect crystal depth over which

the beam is attenuated of 1/e because diffraction is taking place), the condition for the

kinematical thery to be valid is

d� text (2.1)

The value of text ranges between 1 µm and 100 µm depending on the strength of the

reflection. Soon after the discovery of the diffraction of x-rays by crystals it was found that

the observed Bragg reflections in single crystals differed significantly from the theoretical

predictions [33]. For example, the measured integrated intensities and widths of the

Bragg peaks were larger than those expected for perfect crystals. It was recognised that

the assumption that the crystals were perfect was incorrect and that instead real crystals

had to be viewed as composed of mosaic blocks, slightly displaced and misoriented relative

to one another. In the case of mosaic crystals, for the kinematical theory to be valid, the

small mosaic blocks have to fulfill the condition in Eq. (2.1) and, at the same time, the

crystal has to be small, less than 1 µm, in order to ensure that multiple reflections between

different blocks are negligible. As the reflectivity of neutron crystal monochromators has

to be saturated using multiple reflections, i.e. by increasing the crystal volume, the

kinematical theory is not applicable to this case.

A mosaic crystal can be seen as an agglomeration of perfect small crystallites. The co-

herence effects which can be observed in the diffraction by perfect crystals are lost in the

case of mosaic crystals because of the randomness in the crystallite distribution. The

phenomenon of the attenuation of the beam due to diffraction by mosaic crystals is called

secondary extinction. This attenuation is weaker than primary extinction in perfect crys-

tals and involves larger crystal volumes. When describing diffraction by mosaic crystals

(analytically or numerically), one has also to be able to model the effect of these crys-

tallites. For example, a knowledge of their size is essential for computing the effect of

primary extinction in the crystal. As a matter of fact, the presence of primary extinction

competes with secondary extinction and therefore decreases the reflectivity. For these

reasons we will briefly describe the dynamical theory of diffraction for perfect crystals

in section 2.3. A more detailed mathematical derivation of the formulas describing the

perfect crystal reflectivity is reported in the Appendix. In the following paragraphs the

analytical reflectivity of non-perfect crystals, and some examples of their implementation

in the XOP code, will be reported.
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2.2 Neutron scattering by matter. Bragg scattering.

The dominant interactions between a neutron and an atom are the strong interaction

with the nucleus and the magnetic dipole interaction with the unpaired electrons. In

the following we will neglect the magnetic dipole interaction, because it is much smaller

than the nuclear interaction and also because we will not deal with magnetic materials.

The basic quantity measured in a neutron scattering experiment is the partial differential

cross-section d2σ/dΩdE
′
. This gives the fraction of neutrons of incident energy E and

wave vector k scattered into an element of solid angle dΩ with an energy between E ′

and E ′ + dE ′ and with wave vector k′. The wavevector is related to the neutron mass

and velocity according to the relation k = mv/h̄. The energy is E = (h̄k)2/2m or,

as a function of the wavelength, E = 81.8/λ2, with E and λ measured in meV and Å

respectively. Thermal neutrons have energies of the order of a few tens of meV, hence

they are used for measuring excitations in materials, having similar energies. Moreover,

their wavelength, of the order of λ ∼ 1 Å, are comparable to the interatomic distances.

These properties make neutrons an excellent probe for the study of static structures and

collective excitations.

The incident and scattered neutron states are represented by the two plane waves ψk and

ψk′ . The direction of propagation of the scattered neutron is determined by the angles θ

and φ as schematically shown in Fig. 2.1.

Figure 2.1: Geometry of scattering.
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When no energy is transferred to the sample, the fraction of neutrons scattered in the

solid angle dΩ, is given by the differential cross-section dσ. dσ is determined by the

probability of transition Wk, k′ from one state described by ψk to another state ψk′ , both

having the same energy E:

dσ =
Wk, k′

incident flux
(2.2)

with Wk, k′ obtained by applying the Fermi’s Golden rule [34]

Wk, k′ =
2π

h̄
|
∫
drψ∗

k′Ṽ ψk|2ρk′(E) (2.3)

In the last equation Ṽ is the interaction potential which causes the transition and ρk′(E)

is the density of final scattering states per unit energy. Denoting by |k > and |k′ > the

neutron wave functions before and after scattering, having the necessary normalization

(see [34] for details), the Eq. (2.3) becomes

dσ

dΩ
= | < k′|Ṽ |k > |2 (2.4)

The inelastic scattering is described by the partial differential cross-section. The neutron

energy change is usually denoted by h̄ω. The state of the sample is denoted by the symbol

λ̃, its energy is Eλ̃ and the state of the neutron and sample system is represented by a

product state function |k λ̃ >. An approximated expression for the partial differential

cross-section, obtained by applying the perturbation theory, is the following average:

(
d2σ

dΩdE ′

)
=
k

′

k
<
∑
λ̃ λ̃

′
pλ̃| < k

′
λ̃

′ |Ṽ |k λ̃ > |2δ (h̄ω + Eλ̃ − Eλ̃′ ) > (2.5)

where pλ̃ is a weight for the state λ̃. The partial differential cross-section will be recalled

when introducing, in section 2.6, the inelastic processes due to the vibration of the atoms

in crystals.

Turning back to elastic events, and introducing the concept of scattering amplitude f (k − k′) =

− < k′|Ṽ |k > we can write

dσ

dΩ
= |f (k − k′) |2 (2.6)

Since the neutron scattering by a bound nucleus is a very short range interaction, it

can be considered to be isotropic and characterised by a single parameter b, called the



Analytical models 23

scattering length. The scattering length can be a complex quantity and its value depends

on the particular nucleus involved in the scattering and on the relative orientation of the

neutron and the nuclear spin (if it exists). The scattering length of different isotopes

belonging to the same atomic species can have different values. The imaginary part of

b represents absorption by the nucleus. Since the scattering is isotropic, the effective

interaction between the neutron and the nucleus sitting at R is described by the Fermi

pseudo-potential

Ṽ (r) =
2πh̄2

m
b δ(r −R) (2.7)

Then, substituting into Eq. (2.4)

dσ

dΩ
= |b|2 (2.8)

and the total cross-section is

σ = 4π|b|2 (2.9)

We now consider a rigid array of N nuclei, each nucleus sitting at Rl. It can be shown

that, due to the dependence of b on the particular nucleus, isotope, or relative spin state,

the cross-section can be written as

(
dσ

dΩ

)
=

(
dσ

dΩ

)
coh

+

(
dσ

dΩ

)
incoh

(2.10)

where the coherent scattering cross-section (dσ/dΩ)coh represents interference between the

waves scattered from each nucleus

(
dσ

dΩ

)
coh

= | < b > |2 |∑
l

ei(k−k′)·Rl|2 (2.11)

and the incoherent scattering cross-section (dσ/dΩ)incoh is given by

(
dσ

dΩ

)
incoh

= N
(
< |b|2 > −| < b > |2

)
(2.12)

Bragg scattering by a rigid lattice is usually described by the unit cell structure factor Fτ
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Fτ =
∑
m

< bm > eiτ ·m (2.13)

where τ is the reciprocal lattice vector and m the position vector of the atom m in the

unit cell. The Bragg scattering cross-section is then

(
dσ

dΩ

)
coh

= N
(2π)3

V0

∑
τ

δ (k − k′ − τ) |Fτ |2 (2.14)

with V0 the unit cell volume.

Finally, the reduction in the number of neutrons that are forward scattered by a system

of N nuclei, is determined by the absorption cross-section [35]

σabs = −N 4π

k
Im (b) (2.15)

A collection of neutron cross-section and scattering lengths has been compiled by Sears

and published in Neutron News [36]. We have used it as a database in the XOP for

neutrons code in order to be able to calculate reflectivity and absorption by crystals.

2.3 The dynamical theory of neutron diffraction

The method commonly used to find the solutions for the neutron wave diffracted by

a crystal has many similarities with X-rays. In the latter case the solutions for the

electromagnetic field are found by solving Maxwell’s equations after writing them in terms

of the charge density, while for neutrons we determine the behaviour of the coherent

wave ψ by solving the Schrödinger equation with an effective potential determined by

the average coherent scattering length. The coherent wave representing neutron optical

phenomena satisfies the one-body Schrödinger equation

[
− h̄2

2m
∆ + v (r)

]
ψ (r) = Eψ (r) (2.16)

The optical potential v (r) represents the effective interaction of the neutron with the

medium and is given in the elementary theory of dispersion by

v (r) =
2πh̄2

m
ρ 〈b (r)〉 , (2.17)
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where b (r) is the bound coherent scattering length and ρ is the number density. In the

Appendix we give the solution of the previous equations using the formalism of Sears

[35]. This is also called Laue’s method and consists in finding a solution of Eq. (2.16)

such that ψ (r) and ∇ψ (r) are continuous at the crystal boundary and that ψ (r) has the

correct asymptotic behaviour at infinity. This method is approximated because the optical

potential in Eq. (2.17) neglects local effects. One consequence of this approximation is

that the attenuation of the coherent wave results from absorption by the nuclei and ignores

diffuse scattering. The approximation is overcome using the Ewald method, which consists

in applying a rigorous theory of dispersion for diffraction by a regular atomic lattice. This

rigorous theory handles the microscopic multiple scattering (local-field problem), while

the dynamical theory that we are going to analyse deals with the macroscopic multiple

scattering. However, the corrections to Eq. (2.17) due to local field effects are of the order

of 10−4 or less, and can be disregarded in most cases [35].

According to the formalism of Zachariasen [37] and Sears [35], as shown in the Appendix,

the perfect crystal diffraction profiles are written in terms of two dimensionless parameters

x and y whose values can be computed from the Eqs. (A.42). The x coefficient represents,

apart from a constant, the ratio between the crystal thickness d and the primary extinction

coefficient text, whose values can range between 1 and 100 µm. The y coefficient is, apart

from an additive constant, the ratio between the deviation from the exact Bragg angle

(θ− θB) and the Darwin width χD defined in the Appendix, which represents the angular

range of total reflection for a perfect thick crystal and is of the order of 10 µ rads.

Thin crystal case. If the crystal thickness is much smaller than the primary extinction

depth, i.e. if d� text, the reflectivity, for both the Laue and Bragg case is

R (x, y) =

(
sin xy

y

)2

(2.18)

The result of the implementation of this theory in XOP is shown in Fig. 2.2: the figure

shows the neutron reflectivity, versus (θ−θB), of a perfect Si < 111 > crystal, 5 µm thick,

in Bragg symmetric geometry with λ = 1.8 Å.

It can be seen that, if the crystal is so thin that primary extinction can be neglected, the

integrated reflectivity IR is proportional to the crystal volume δV , and to the scattering

factor Q:

IR = QδV (2.19)

with:
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Q = λ3F 2
hkl/

(
V 2

0 sin 2θB
)

(2.20)

with λ representing the wavelength, Fhkl the structure factor and V0 the unit cell volume.

The result in Eq. (2.19) is valid when the limited crystal thickness and/or structure factor

make primary extinction negligible. Hence the decrease of the amplitude of the incident

beam is negligible and the crystal is supposed to be uniformely bathed by radiation.

This result is also valid for mosaic crystals: in this case, however, the limits of validity

are larger, because of the more extended volume concerned by diffraction and secondary

extinction.

Figure 2.2: Thin perfect crystal reflectivity: Si <111> in Bragg symmetric geometry at

λ = 1.8 Å, d = 5 µm.

Thick crystal case. If the crystal is thick, i.e. d� text, the reflectivity is non zero in

a small interval |y| ≤ 1, or |θ − θB| ≤ χD ∼ 10 µ rad. As reported in Fig. 2.3, R (x, y)

has a very narrow peak and oscillates very rapidly as a function of y. By averaging these

oscillations, one can retrieve what would be the measured reflectivity profile of a perfect

crystal. The result is that for x� 1, in Bragg geometry, the reflectivity is equal to 1 for

|y| ≤ 1. This peak width is equal to the Darwin width. In the Laue case the reflectivity has

a Lorentzian shape with a height equal to 0.5 and a FWHM equal to χD. The oscillations

appearing in the figure are due to the so-called Pendellösung interference: the energy

flow of the wave field beneath the crystal surface changes periodically because there is an

energy transfer between the forward diffracted and the diffracted wave. Thus this effect
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can be observed when absorption is weak. The period of the oscillations is related to χD

and to the product between the crystal thickness d and the absorption coefficient µ. The

phenomenon of primary extinction, which we will often mention in the following Chapters,

is the total reflection of neutrons or x-rays in the narrow angular range around the peak

of the diffraction profile, with a consequent rapid exponential decay of the wave in the

crystal.

Figure 2.3: Perfect crystal reflectivity: Si <111> in Bragg symmetric geometry at λ = 1.8

Å, d = 1 mm.

Anomalous absorption. This effect, also called Borrmann effect, was first observed by

Borrmann in 1943 [38]: a thick perfect crystal with large absorption, µd� 1, set for x-ray

diffraction in Laue symmetric geometry, showed two spots on a photographic film: one

corresponding to the diffracted beam and the other in the direction of the incident beam,

i.e. separated by 2θB with respect to the first beam. The two peaks were found to have

comparable intensity. It was clear that the second spot was due to diffraction and was

called the forward diffracted beam. The reason for this is the presence in the crystal of a

standing wave with one wave component having nodes at the Bragg planes and another

having antinodes. This means that the absorption of this second component is zero. It

can be seen analytically that the standing wave patterns are parallel to the diffracting

planes: the absorption by a given atom is proportional to the intensity of the neutron

wave at that atom, then if the nodal planes are coincident with the diffracting planes,

absorption is very much decreased.

Parasitic multiple Bragg scattering. Simultaneous diffraction occurs when a single
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crystal is orientated in a neutron or x-ray monochromatic beam so that two, or more, sets

of planes simultaneously satisfy Bragg’s law. This can be observed experimentally when

the crystal is orientated to diffract from a particular set of Bragg planes, and is rotated

slowly around the the diffraction vector: changes in the intensity can be observed because

the Bragg’s law can be simultaneously satisfied for a different set of planes [39]. In the

case of mosaic crystals this effect is observed on a wavelength range larger than that of

perfect crystals because of the presence of misoriented blocks. The consequences for the

reflectivity of mosaic crystals are discussed in [40].

2.4 The reflectivity of mosaic crystals

The typical angular spread with which a neutron beam exiting a guide or a beam tube

reaches the instrument is of the order of 1o or less. In order to design efficient optical

instruments, the angular acceptance of a neutron monochromator has to be coupled to

the divergence of the incident beam: this can be achieved by the use of non-perfect

crystals. Perfect crystals, as shown in Fig. 2.3, have a non-zero reflectivity in an angular

range of the order of 10 µ rad, while typical mosaic crystals, such as copper in Fig. 2.4,

have the right angular acceptance, i.e., a fraction of a degree. Therefore, the standard

neutron monochromator is a mosaic crystal, i.e., a crystal which is considered to be formed

by a large number of small perfect crystallites of microscopical or submicroscopical size

oriented almost but not exactly, parallel to one another. The drawback is the increased

divergence of the beam reflected in the plane of scattering. The discussion on production

and performance of crystals with a gradient in the lattice spacing, which could eliminate

the disadvantage of the beam widening by mosaic crystals, dates back to the 1960’s

[41, 42, 43]. The difficulties in achieving a controlled gradient which give the same reflected

intensity as a mosaic crystal, with a reasonable thickness and without any mosaicity, has

so far prevented the application of gradient crystals. Mosaic crystals show a much broader

diffraction profile as compared to perfect crystals and have a lower peak reflectivity. The

diffraction profiles can be calculated using the theory of Bacon [44] or Zachariasen [37]

which are equivalent. They assume that the crystallites are oriented almost parallel to

the crystal surface (for the Bragg case) following a distribution W (θ − θB), θ being the

angle formed by the incident beam and the Bragg planes and θB the Bragg angle. The

full-width-at-half-maximum η of this distribution is called the intrinsic mosaic spread or

intrinsic mosaicity.

The multiple Bragg reflections in a mosaic crystal and the concept of secondary extinction

are summarised by the Darwin’s equations [44]. An exact and general solution of these

equations has been given by Sears [45]. The physical quantities which govern diffraction

by a mosaic crystal are the scattering coefficient σ = QW (θ − θB) and the absorption



Analytical models 29

coefficient µ, which we will define and describe in detail in section 2.6. If we define

a = µd/ sinψ and s = σd/ sinψ, with d being the crystal thickness and ψ the angle

formed by the incident beam and the surface, the Sears’ equations [45] for the reflected

and transmitted beam in symmetric Laue (transmission) and Bragg (reflection) geometries

are:

RLaue symm =
1

2
e−a

(
1 − e−2s

)
(2.21)

TLaue symm =
1

2
e−a

(
1 + e−2s

)
(2.22)

RBragg symm =
s√

a(a + 2s) coth
√
a(a+ 2s) + (a+ s)

(2.23)

TBragg symm =

√
a(a + 2s)√

a(a+ 2s) cosh
√
a(a + 2s) + (a + s) sinh

√
a(a+ 2s)

(2.24)

The model is valid if the mosaicity is much larger than the Darwin width of the perfect

crystal and if the thickness of the mosaic blocks t is much smaller than the primary

extinction depth text. According to Zachariasen [37] the correction for primary extinction

consists of a smaller scattering factor Q. The actual Q is decreased by a factor f(A),

where A ∼ t/text. Freund et al. [46] pointed out that the phenomenon of the complete

extinction of the beam in a mosaic block may as well have the effect of a local increase of

the absorption cross-section, and that a correction in Q is not sufficient. We will return

to this point when presenting the experimental results.

One consequence of Eqs. (2.21) to (2.24) is that anomalous absorption, which is not to be

confused with the Borrmann anomalous absorption observed in perfect crystals, is present

in Bragg geometry, but not in Laue geometry:

[R(ψ) + T (ψ)]Laue symm = e−µd/ sinψ (2.25)

[R(ψ) + T (ψ)]Bragg symm �= e−µd/ sinψ (2.26)

The mosaic crystal calculations were implemented in the XOP code. An example of the

calculation of the intensities reflected and transmitted by an ideal mosaic copper crystal

with η = 0.1o are reported in Fig. 2.4. The presence of anomalous absorption (see Eq.

(2.26)) around the peak position is shown in the plot representing absorption, calculated
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Figure 2.4: Mosaic crystal reflectivity, transmission and attenuation as a function of

(θ − θB) for Cu <111> in Bragg symmetric geometry at λ = 1.8 Å.

as A = 1 − R − T , on the bottom. In Fig. 2.4 the x-axis represents (θ − θB): the angle

formed by the Bragg planes and the crystal surface is zero, hence θ ≡ ψ.

When the mosaic crystal is very thin and multiple reflections of the beam are negligible,

the reflectivity calculated with the Darwin’s equations is equal to the result of the dy-

namical theory. Hence, the integrated reflectivity is proportional to the crystal volume, as

stated by Eq. (2.19). As a consequence of secondary extinction, when the crystal volume

increases and multiple scattering appears, the crystal is no longer uniformely immersed

in the beam. Hence, the integrated reflectivity is no longer proportional to the volume.
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2.5 Modelling the reflectivity of bent and gradient

crystals

Let us suppose that we have a white neutron beam and want to reduce the spectral band

to ∆λ using crystal diffraction. This spectral band can be represented in a (2dH, sin θ)

diagram as a surface delimited by two hyperbolas representing the Bragg’s law as shown

in Fig. 2.5.

Figure 2.5: Selection of a range of wavelengths by a mosaic or gradient crystal.

Calculating the derivative of Bragg’s law λ = 2dH sin θ we obtain the equation

∆λ

λ
=

∆dH
dH

+ cot θ∆θ (2.27)

from which we see that the wavelength bandwidth can be selected using crystals with

Bragg planes misoriented due to a mosaicity η. In this case ∆λ/λ is equal to the second

term on the right in Eq. (2.27), with ∆θ depending on the mosaicity η. A different way

to select ∆λ/λ is to use crystals having a very small mosaicity and a variation of the

d-spacing ∆dH along one direction. The most important feature of gradient crystals is

that the reflected beam has the same divergence as the incident beam. This is of decisive

importance when high angular resolution is needed. Some technical details about the

growth of gradient crystals are discussed in [47]. The improvement that these crystals
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would give and the optimal values for the d-spacing gradient are discussed in [48]. The

value of ∆dH/dH has to be optimised by requiring that extinction is maximized. By using

Eq. (2.27) again we see that, when using gradient crystals, in order to obtain diffracted

intensities similar to those of mosaic crystals, we need ∆dH ∼ 1% dH. The major difficulty

is obtaining such large values of the gradient. A variety of techniques can be used for the

production of a gradient of the d-spacing (sound-excited crystals, temperature gradient

[43]). A good example is that of Si1−xGex [49, 50] binary alloys: the lattice constant of

germanium exceeds that of silicon by 4%. With current crystal growth technology [51],

a Ge concentration gradient up to 1 % cm−1 can be achieved: this gives a gradient of

∆dH/dH = 0.04% cm−1, which is too small for neutron use.

An alternative to mosaic or gradient crystals, suitable when focusing at the sample is

required, is the use of crystals with bent Bragg planes. In this case, the variation in ori-

entation of the Bragg planes along the crystal depth allows the selection of a wavelength

bandwidth similar to that of mosaic crystals, and which depends on geometry because the

bending of the Bragg planes effectively ”seen” by the neutron depends on the incoming

angle. The x-ray and neutron dynamical diffraction by bent and gradient perfect crys-

tals can be obtained by writing the Maxwell’s equations (for x-rays) or the Schrödinger

equation (for neutrons) in the most general form [52, 53, 54]. An approximate solution,

valid for small deformations, is found by assuming the crystal to be ideally divided into

regions whose properties remain locally unchanged and that the final crystal reflectivity

is the sum of the reflectivities of these small regions, also called lamellae. The reflecting

properties of mosaic bent crystals, instead, are described by the layer-coupling model [56]:

an optical matrix for the crystal is written, with which the Darwin’s equations assume

a discrete form. The solution is found by recursively multiplying the matrices for the

different layers and by applying the boundary conditions. These two models cannot be

compared as they apply to different kinds of crystals: perfect for the lamellar theory and

mosaic for the layer-coupling model. Nevertheless, the lamellar model suffers the approx-

imation that the exchanges between transmitted and diffracted beam, from one layer to

the next, are neglected. The layer-coupling model, instead, deals with multiple diffraction,

as it comes from the Darwin’s equations, hence is more realistic.

2.5.1 The lamellar theory

The dynamical diffraction of x-rays by ideally deformed crystals was developed by Takagi

and Taupin [52, 53]. We report here the basic equations, in the two beam case, in the

form derived by Gronkowsky [55]. The crystal is treated as a medium having a dielectric

constant with periodicity in the three dimensions
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ε = ε0(1 + χ) (2.28)

where ε0 is the dielectric constant in vacuum and χ is the dielectric susceptibility, a

three-dimensionally periodic function of position. The electric and magnetic quantities

are defined at each point and the solutions are found by solving Maxwell’s equations in

this medium

∆D + rot rot χD + 4π2k2D = 0 (2.29)

where D is the electric induction and k the wave vector modulus inside the crystal. The

basic assumption of the theory is that, when the crystal is deformed by some displace-

ment vector w(r), then χ(r) = χ0(r − w(r)), with χ0 being the susceptibility before

the deformation. We will denote by χh and Dh respectively the Fourier components of

susceptibility and electric induction and introduce the notion of a local reciprocal lattice

vector h′

h′ = h−∇(h · w(r)) (2.30)

Using the last equation (2.30) we can write an equivalent of the Bragg relation, as in the

perfect crystal

K′ = K0 + h′ (2.31)

where K0 and K′ are respectively the wave vectors of the incident and diffracted waves.

Finally, the Maxwell’s equations can be written, in the case of perpendicular, or σ-

polarization, as

(
K2

0 − k2

k2
− χ0

)
D0 − χh̄Dh = − i

πk

∂D0

∂s0
(2.32)

−χhD0 +

(
K2
h′ − k2

k2
− χ0

)
Dh = − i

πk

∂Dh

∂sh

where the partial derivatives of the scalar amplitudes D0 and Dh are calculated along

the forward diffracted s0 and diffracted sh directions respectively. The Takagi-Taupin

equations (2.32) can be solved analytically in few cases: the application of numerical

solutions in a wide range of cases is reported in [55]. The theory and equations of Takagi-

Taupin were extended to neutrons by Klar and Rustichelli [54]. They verified that the
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hypotheses which are needed for solving the equations are also fulfilled for neutrons. Then

they supposed that the principle of equivalence between neutron and x-ray diffraction,

for the case in which the polarization vector is perpendicular to the plane of incidence, is

also valid for curved crystals. They made the following assumptions on the kind of crystal

deformation: first, the displacement vector w(r) has to be small

| ∂w
∂xi

| � 1 (2.33)

and, second, its variation from one atom to the next has to be smaller than the deformation

itself

| ∂2w

∂xi∂xj
λ| � | ∂w

∂xi
| (2.34)

A particular and very important case is when the deformation is only a function of the

Z coordinate along the crystal depth [57]. This is the case for bent or gradient crystals.

With these assumptions the Takagi-Taupin equations (2.32) become

i
dX

dA
= X2 (1 + ik) − 2X (y + ig) + (1 + ik) (2.35)

where X is proportional to the ratio between the diffracted and incident wave amplitudes.

The other (dimensionless) quantities appearing in the previous equations are the same

as defined by Zachariasen [37]: y is the deviation from Bragg conditions in the Darwin

width units, A the dimensionless depth of the reflecting planes inside the crystal, g and k

the absorption of the incident and diffracted wave respectively. The y parameter changes

with crystal depth:

y = y (0) + cA (2.36)

where c is the crystal curvature (in general it is related to the crystal deformation, and is

proportional to the d-spacing gradient in the case of a gradient crystal). The reflectivity

of the crystal, in Bragg geometry, is:

R = |X (0) |2 (2.37)

|X (0) |2 as a function of y (0) represents the rocking curve. The Eq. (2.35) can be

solved numerically [54, 57], however, in the limit of small deformations, i.e. small c, the
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reflectivity R of a curved or gradient perfect crystal can be calculated using the simple

lamellar model [58]. The bent crystal is divided into many perfect undeformed crystal

layers, each of thickness Al = 2/c. As shown in Fig. 2.6, at a certain depth inside the

crystal, there can be a layer whose orientation fulfills Bragg’s law: this layer is then in

the condition of total reflection and has −1 ≤ y ≤ 1. The crystal reflectivity is obtained

by adding the reflectivity of the layers (calculated using the dynamical theory results, see

section 2.3) and the rocking curve is then given by the reflectivity as a function of y (0).

It is clear that the assumption of having a layer that, if correctly oriented, totally diffracts

in the range −1 ≤ y ≤ 1 is valid only if the deformation is not too large, i.e. if c ≤ 1.

Figure 2.6: Lamellar model: the bent crystal is divided into many undistorted layers whose

orientation follows the Bragg planes curvature. The diffraction profile is wider than that

of the perfect crystal because different orientations of the incident beam can satisfy the

Bragg’s law at different depths.

The calculation of the reflectivity by bent perfect crystals according to the lamellar model,

already inplemented in XOP for the x-ray case, was extended by us to the case of neutrons

and one example is shown in Fig. 2.7. The model, in the case of x-rays, has been verified

by measuring the rocking curves of several thin bent quartz crystal for several diffraction

orders. The experimental set-up will be described in Chapter 5 and the curves are shown

in Fig. 2.8. The experimental data and the lamellar model are in very good agreement

for these samples.
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Figure 2.7: Bent crystal reflectivity: Si <111> in Bragg symmetric geometry at λ = 1.8

Å. The radius of curvature is R = 15 m.
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Figure 2.8: LEFT: experimental x-ray rocking curves (solid lines) and lamellar model

(dotted lines) for four different samples bent to R = 150 mm. RIGHT: the same for

samples with R = 250 mm. The crystal thickness is d ∼ 60 µm for all the samples.

The x-ray energy was E = 20 keV and the labels indicate the reflection indices. The

experimental peak reflectivities were all normalised to unity for ease of representation.
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2.5.2 The layer-coupling model

The layer coupling model [56] is the discrete form of the Darwin’s equations. We recall that

the Darwin’s equations describe the transport of the diffracted and transmitted intensities

in a mosaic crystals. If the mosaic crystal is also bent or has a d-spacing gradient, then

the diffraction planes change orientation or d-spacing from one layer to the next and the

Darwin’s equations have to be rewritten in a matrix form because the physical parameters

depend on the depth. In this section we will use the bent crystal formalism. The equations

for a gradient crystal require only a slight modification.

P0,n and PH,n are the power of the incident and diffracted beam at the n-th layer. In

Bragg geometry the equations are the following:

P0,n = T0,nP0,n−1 +DH,nPH,n (2.38)

PH,n−1 = D0,nP0,n−1 + TH,nPH,n

where: D0/H,n is the probability of the incident/reflected beam being diffracted and not

being absorbed by the n-th layer; T0/H,n is the probability of the beam being transmitted

by the n-th layer. The previous equations can be expressed by the matrix:


 P0,n

PH,n


 =


 T0,n − D0,nDH,n

TH,n

DH,n

TH,n

−D0,n

TH,n

1
TH,n




 P0,n−1

PH,n−1


 (2.39)

The solution at the last layer is:


 P0,N

PH,N


 =


 M11 M12

M21 M22




 P0,0

PH,0


 (2.40)

where the Mij matrix is obtained by iterating the Eq. (2.39). In the Bragg geometry we

have PH,N = 0, then the reflecting power is:

PH,0
P0,0

= −M21

M22

(2.41)

Finally, the diffraction and transmission probabilities can be written as:

D0,n =
σntn
cos θ0

e
− µtn

cos θ0 (2.42)
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DH,n =
σntn

| cos θH |e
− µtn

| cos θH |

T0,n = (1 −D0,n) e
− µtn

cos θ0

TH,n = (1 −DH,n) e
− µtn

| cos θH |

(2.43)

where: µ is the absorption coefficient, tn the thickness of the n-th layer, θ0 the angle of

incidence, θH the angle of reflection, σn = Q×W (∆θn) the equivalent of the secondary

extinction coefficient for the n-th layer, with Q the scattering coefficient already defined

in section 2.4, ∆θn the deviation from Bragg angle, and W the mosaic distribution:

W (∆θn) =
1

ηn2π
1
2

e
−∆θn

2

2ηn2 (2.44)

∆θn = ∆θ1 + εn (2.45)

εn =
1

R

n∑
i=1

ti

[
tan θ0 +

(
sin2 χ− ν cos2 χ

)
tan θB +

1

2
(1 + ν) sin 2χ

]
(2.46)

In the last equation χ is the asymmetry angle, ν the Poisson ratio and θB the Bragg angle.

The calculation of the neutron reflectivity by a mosaic bent germanium crystal is shown

in Fig. 2.9. The main difference with respect to the perfect bent crystal example in Fig.

2.7 is that the peak reflectivity is smaller and the shape is smoother: these effects are

both due to mosaicity.
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Figure 2.9: Bent mosaic crystal reflectivity: Ge <311> in Bragg symmetric geometry at

λ = 1.8 Å. The radius of curvature is R = 7 m and the mosaicity is η = 0.05o.
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2.6 Neutron removal in crystals - Thermal diffuse

scattering

The need for a correct description of the neutron reflectivity of mosaic crystals and the

search for new ideas for improving the efficiency of neutron monochromators and analy-

sers, both lead to the problem of determining the cross-sections that mainly contribute

to the attenuation coefficient µ of the neutron beam. This is the sum of three parts: nu-

clear absorption as defined in section 2.2, parasitic Bragg scattering, and thermal diffuse

scattering (TDS):

µ =
n

V0
(σabs + σpar + σTDS) (2.47)

where n/V0 is the number of atoms or molecules per unit cell volume. The nuclear absorp-

tion cross-section σabs does not depend on the temperature and has a simple dependence

on energy except for some well known resonant cases. The parasitic Bragg scattering

cross-section σpar, already mentioned in section 2.3, is of difficult calculation. Neverthe-

less, it can have an important role in the decrease of the diffracted intensity, especially at

higher energy, as we will see in Chapter 5. The TDS cross-section can be calculated as

the sum of single phonon and multiple phonon cross-sections:

σTDS = σsingle−ph + σmulti−ph (2.48)

The calculation of TDS has been an important task for neutron scatterers since the early

years of neutron research [59]. There are two main reasons for being interested in TDS

cross-sections:

i) Computing, via a knowledge of the differential cross-section, the improved resolution

and background of cooled analysers, a solution which has been adopted for the graphite

analysers of the time of flight spectrometer IRIS [60] at ISIS.

ii) Assessing the behaviour of the total cross-section as a function of temperature and

incident neutron energy, in order to accurately compute the reflectivity of mosaic crystals,

especially at energies greater than the Debye energy of the monochromator crystal.

We have not dealt with the precise computation of the differential cross-section, which re-

quires having a complete model of the lattice dynamics of the crystal under consideration.

This is an important subject, also because the amount of TDS is not constant, but changes

with changing the Bragg indices and is stronger in the vicinity of the Bragg peak [61].

We aimed at studying the energy and temperature dependence of the total cross-section
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σTDS, for some materials, and try to compute and also measure the improved reflectivity

of these materials, when used as cooled monochromators. For this reason, we used two

different ways for calculating σTDS: an empirical formula developed by Freund [62] and

the numerical integral of d2σ/dΩ dE, discussed in the last section of this Chapter.

There are different approaches and approximations to the problem of TDS [59, 63, 64,

65]: all the authors, except for Binder [65] who gives the coherent cross-section for a

polycrystal, use the incoherent approximation for the multi-phonon processes, i.e. they

disregard all restrictions coming from the momentum conservation and give a non-zero

partial differential cross-section in all scattering directions. This gives the correct result

at energies much higher than the Debye energy. At lower energy the main contribution

to σTDS is the single phonon scattering cross-section σsingle−ph which can be calculated

without approximations. At intermediate energies coherence effects, i.e. interference of

scattering from different sites have to be considered, but they amount to only a few

percent of the total cross-section [63]. We report here the formula given by Freund [62]

for the total multi-phonon cross-section:

σmulti−ph = σ0 {1 − exp [−C2E (B0 +B (T ))]} (2.49)

In this equation σ0 is the sum of the coherent and incoherent cross-sections for the nucleus,

the C2 parameter has to be determined experimentally for each material and B0 +B (T )

is the mean square atomic displacement. The energy dependence of σabs and of (σabs +

σTDS) for copper at 15K and 290K, calculated using Eq. (2.49) for the multi-phonon

contribution, is plotted in Fig. 2.10. The figure shows that, by neglecting the temperature

effect, the calculation of attenuation is far from being realistic, even at low temperature.

The behaviour of the TDS contribution, without true absorption, will be shown in the

next section.

2.6.1 The partial differential cross-section for single and multi-

ple phonon interactions

The simultaneous emission or absorption of two or more different phonons is called a

multi-phonon process. Knowledge of multi-phonon effects is useful for two main reasons:

estimating diffuse scattering for correcting the measured data and calculating its influ-

ence at high neutron energy. This calculation is difficult because the partial differential

cross section is very slowly convergent with increase in the number of phonons involved.

However, there is an important consideration made first by Placzek: when two or more

phonons are involved, the multi-phonon cross section tends to be a smoothly varying func-

tion of scattering angle and incident energy, because energy and momentum conservation
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Figure 2.10: Total cross-sections σabs+σTDS for copper. The line on the bottom represents

the true absorption cross-section σabs. The temperature dependent σTDS was calculated

using the model developed by Freund [62].

are less restrictive. This means that all scattering can be treated as if it was incoher-

ent and, in the multi-phonon cross section, terms with l
′ �= l can be ignored (the index

l denotes the lattice site). This is known as the incoherent approximation. A detailed

discussion of the validity and convergence of the results of this method can be found

in the book by Turchin [64]. A further idea is that the multi-phonon cross section can

be rearranged in a form which has the correct behaviour at high incident energy. This

leads to the so-called Gaussian approximation. Here we will report only the theory for

a Bravais lattice. We will use the harmonic approximation which consists in truncating

the expansion of the displacements at quadratic terms. The starting point is the partial

differential incoherent cross-section (see Eq. 2.5) written as a sum of terms involving one,

two, ...., n phonons. The nth term, according to Marshall and Lovesey [63], is:

(
d2σn
dΩdE ′

)inel
inc

=
σinc
4π

k
′

k

N

2πh̄

∫ ∞

−∞
dt e−iεt/h̄ e−2W (κ) 1

n!
< κ · û(l, 0)×κ · û(l, t) >n (2.50)

In Eq. (2.50) the sum over l is implicitly assumed. We have: κ = k
′ −k, N is the number

of nuclei, ε = E
′ −E is the exchanced energy, W (κ) is the Debye Waller factor and û(l, t)

the displacement at time t from the equilibrium position of the atom located at l.
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Using the formalism of Turchin [64] we obtain for the scattering from a free nucleus, in

the incoherent approximation:

d2σ

dΩdE ′ =
σ0

4π

(
1 +

1

µ

)2
k′

k
e−γκ

2
∞∑
n=0

(
h2κ2

2M

)n
fn(ε)

n!
, (2.51)

where the l index has been omitted. In the last equation σ0 = σinc + σcoh and µ is the

reduced mass of the atom. For a monatomic crystal γ and fn(ε) can be calculated in

terms of the phonon spectrum g(ε) as

γ =
∫ ∞

0

h̄2

2Mε
coth

(
ε

2KBT

)
g(ε)dε (2.52)

f(ε) =
g(|ε)|

ε [1 − exp (−ε/KBT )]
(2.53)

fn(ε) =
∫ +∞

−∞
f(ε1)dε1

∫ +∞

−∞
f(ε2)dε2.......

∫ +∞

−∞
f(εn)dεn δ(ε1 + ε2 + ......+ εn − ε) (2.54)

Since the fn(ε) function is obtained by convoluting the f(ε) function n times, it can be

replaced, for large n, by a Gaussian with average values for ε and for the dispersion which

are n times as large as the those for f(ε), which are given by:

εaver =

∫+∞
−∞ εf(ε)dε∫+∞
−∞ f(ε)dε

(2.55)

∆2 =

∫ +∞
−∞ ε2f(ε)dε∫+∞
−∞ f(ε)dε

− ε2aver (2.56)

Consequently, in the Gaussian approximation:

fn(ε) =
1√

2πn∆

1

εnaver
exp

[
−(ε− nεaver)

2

2n∆2

]
(2.57)

Finally, we can separate the cross section Eq. (2.51) into the elastic term, the one-phonon

cross section, and the multi-phonon cross section. The first two terms can be calculated

with allowance for interference and the last one, with the approximations here discussed,

becomes:
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d2σmulti−ph
dΩdE ′ =

σ0

4π

(
1 +

1

µ

)2
k′

k
e−γκ

2
∞∑
n=2

(
h2κ2

2M

)n
1

n!

1√
2πn∆

1

εnaver
exp

[
−(ε− nεaver)

2

2n∆2

]

(2.58)

Eq. (2.58) can be rewritten in a more compact form as:

d2σmulti−ph
dΩdE

=
σ0

4π

(
1 +

1

µ

)2
k′

k
e−γκ

2

exp
[
εaver
∆2

ε
]

1

∆
F (z, x) (2.59)

with:

z =
h2κ2

2Mεaver
exp

(
−ε

2
aver

2∆2

)
(2.60)

x =
ε

∆
(2.61)

F (z, x) =
∞∑
n=2

zn

n!

exp {−x2/(2n)}√
2πn

(2.62)

In Fig. 2.11 we show the numerical results for the multi-phonon cross section, in the case

of copper, obtained calculating the last formulas (left) compared to a semi-empirical model

[62] (right). It is not clear if the strong disagreement between the two models depend

on the approximation or on numerical limits in the calculation and integration of Eq.

(2.59). It is true that, by definition, Eq. (2.59) is only valid for energies much higher than

the crystal Debye energy. However, the numerically integrated σmulti−ph plotted versus

the energy, reaches the saturation value very slowly and also its ”high energy” behaviour

does not agree with the Freund’s model. We will return to this point in Chapter 5, when

interpreting the measured temperature dependent reflectivity of a mosaic copper crystal.
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Figure 2.11: Multi-phonon total cross-section versus energy for copper. LEFT: σmulti−ph
numerically calculated from Eq. (2.59), which is obtained after applying the incoherent

and gaussian approximations. RIGHT: σmulti−ph calculated using Freund’s model [62].
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2.7 Summary and conclusions

Our aim is to well understand the physical models describing the diffraction by crystals

used as monochromators and analysers, in order to be able to accurately determine the

parameters which influence the diffraction properties in terms of resolution and flux.

In this chapter we have outlined the ”state of the art” of theoretical models for describing

neutron reflectivity by imperfect (mosaic, bent and gradient) crystals.

The chapter has been divided in several sections, where the models to predict the diffrac-

tion profiles for different types of crystals have been clearly described:

1) Dynamical theory of diffraction for perfect crystals. The study of perfect crystals is

important because imperfect crystals are always built using simple ”perfect” elementary

crystallites. In addition, primary extinction is a dynamical diffraction effect. Hence,

if we want to describe real mosaic crystals in a realistic way, we have to calculate the

corrections due to primary extinction using the formal results of the dynamical theory

that we presented in this Chapter. Moreover, the Takagi-Taupin equation describing the

waves diffracted by perfect bent (or gradient) crystals is a result obtained in the frame of

the dynamical theory.

2) The ”standard” model for mosaic crystals. We follow the formulation of Sears, the most

used in the neutron community, and the most general (Bragg and Laue symmetric and

asymmetric cases). This theory supplies analytical formulas for describing the diffraction

profiles, which are the analytical solutions of the Darwin’s equations. These are the

transport equations for the neutron intensity in the crystal. The Sears’s solution implies

some restrictions: the distribution of the crystallites has to be uniform in the whole

crystal; moreover primary extinction inside a single crystallite is neglected. The concept of

secondary extinction has been introduced and will be recalled (also with giving numerical

values) in the next Chapter.

3) Bent crystals (i.e., having the Bragg planes bent in the plane of scattering) are increas-

ingly used not only to focus the beam, but also to increase the integrated intensity of the

diffraction profile with respect to that of perfect crystals. This is because the curvature

produces a lack of perfection in the crystal, that starts to behave ”imperfectly”. This

effect can also be combined with an intrinsic crystal mosaicity. Two theoretical models

have been described, the lamellar theory, for bent perfect crystals, and the layer-coupling

model, for bent crystals having an additional mosaic spread. It is important to calcu-

late the reflectivity as a function of the various parameters, as Bragg angle, thickness

and bending radius, and also compare the results for a perfect bent crystal (which is the

case of the elastically bent silicon wafers) to those for a mosaic one (as plastically bent
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germanium).

4) For any crystal, it is important to study the temperature dependent neutron reflectivity.

In order to take into account this effect, we have reported the model developed by Freund

[62] for calculating the effect that moving nuclei have on the neutron attenuation length.

According to this model, in some cases the effect of cooling the crystal to low temperature

can improve the reflectivity as much as 50%. We have tried to quantitatively compare

this model to the analytical, approximated incoherent multi-phonon cross-section. There

is a strong disagreement between the model and the approximated theory, hence, in our

opinion, further work is necessary in this field. These theories will be used for discussing

the copper neutron reflectivity versus temperature reported in Chapter 5.

All the models have been implemented in computer codes, and are applied for the analysis

of experimental data.



Chapter 3

Numerical solutions for mosaic and

bent crystals

We developed two original Monte-Carlo programs for the simulation of Bragg diffraction

by non-perfect (flat and bent) crystals: these programs have practical applications, as

they can be used as crystal modules in any ray-tracing simulation of neutron instruments.

Since they use a detailed description of the particle interaction with the microscopic

homogeneous regions composing the crystal, they can be used also for the calculation of

quantities having a conceptual interest, as multiple scattering, or for the interpretation

of crystal diffraction topographs, as we will show in Chapters 5 and 6.

3.1 The MOSAIC Monte Carlo code

The MOSAIC program allows the numerical solution of the Darwin’s equations [44] for

the reflected and transmitted beam in a mosaic crystal. It computes quantities such as the

beam distribution at the exit surface, the divergence, the number of scattering events and

the total path length inside the crystal for each trajectory. These quantities are difficult to

calculate using analytical approaches. The method consists in following a given number of

trajectories inside a crystal of thickness d, which is formed by an agglomeration of perfect

crystallites. The angular distribution of the normal vectors of the crystallites is given

by the usual mosaic distribution W (Θ,Φ). The fundamental physical quantities used in

the program are the FWHM, η, of the mosaic distribution and the crystallite thickness t.

The crystallite transmittivity and reflectivity are calculated according to the dynamical

theory of diffraction and depend on the material, the Bragg planes, and the thickness t.

The simulation of the particle trajectory is done in steps; a pictorial view was shown in

Fig. 1.1 (right) in the Introduction. At each step the particle interacts with a crystallite

49
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as drawn in Fig. 3.1. The crystallite’s orientation N(Θ,Φ) is sampled by the distribution

W (Θ,Φ) thus giving the angle θ formed by the incident direction and the crystallite

surface. θ is then used for calculating R(θ) and T (θ) according to the dynamical theory

of diffraction (Section 2.3 and Eqs. (A.35) in Appendix A). They are respectively the

probability of the particle being reflected or transmitted. The reflection or transmission

events are decided by generating a random number. The particle is followed until it

intersects one of the crystal surfaces. The effect of absorption is included by assigning a

weight or probability to the particle, which is calculated as weight = e−path×µ, with path

being the total path length and µ the absorption coefficient. This method of accounting

for the effect of absorption is not an approximation: at the stage of the particle-crystallite

interaction the absorption is present in R (θ) and T (θ). A schematic representation of

the code structure is shown in Fig. 3.2

Figure 3.1: Geometrical view of the interaction between the particle and the crystallite.

The two possible events (diffraction or transmission) are shown and their probability is

calculated according to the dynamical theory of diffraction. The Θ and Φ angles are

sampled, for each crystallite met by the particle, by the mosaic distribution W (Θ,Φ).

By definition, this method allows us to know the complete history of each particle: how

many scattering events it has undergone (and also at what spatial coordinates), the maxi-

mum depth it has reached in the crystal slab, and the total path length. These important

quantities are related to multiple scattering and secondary extinction.

The final values of the particle coordinates (x, y, z), direction cosines (Vx, Vy, Vz), path

length path, and number Nmulti of reflection events inside the crystal are written in a file.

The case of an anisotropic mosaic distribution is handled, in the MOSAIC program, by

using the following probability distribution for the polar and azimuthal angles:
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Figure 3.2: Structure of the MOSAIC and BENT Monte Carlo codes.

W (Θ,Φ) = e
−4 log 2Θ2 [ sin

2 Φ

η2
s

+ cos2 Φ

η2
p

]
(3.1)

where ηs and ηp are the FWHMs in the scattering plane and perpendicular to it, respec-

tively.

The limits of applicability of the MOSAIC program are found in those cases where the

description of the beam amplitude, rather than the intensity, is needed. In other words,

when we talk of simulated trajectories or simulated particles we deal with something which

resembles energy transport (intensity) in the crystal, rather than waves (amplitudes).

Therefore these simulations cannot be used to calculate interference effects, such as appear

in perfect crystals or crystals having a very small mosaicity, which is of the order of the

perfect crystal Darwin width χD (defined in Appendix A).

3.1.1 Examples

An essential benchmark for the code is a comparison of diffraction profiles with those

predicted by the theory. Fig. 3.3 shows the reflectivity of a copper mosaic crystal in
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Bragg and Laue symmetric geometries. The primary extinction depth for copper at this

wavelength is calculated by using the dynamical theory of diffraction: text = 6.7 µm. It is

worth noting that this value is not used directly in the code. Nevertheless the simulated

reflectivity is strongly dependent on it: for a crystallite size t such that t� text, the

reflectivity is not affected by primary extinction; for t≥ text the simulated rocking curve

will be fitted by the analytical one only if a correction to the Q scattering factor is made.

The simulated reflectivity obtained using a crystallite thickness t = 2 µm is in very good

agreement with that obtained using the analytical formulas in Eqs. (2.23) and (2.21).

The result with t = 10 µm (top in Fig. 3.3, Bragg symmetric case) is well reproduced by

introducing a correction factorQ
′
= 0.58×Q to the scattering factor. By using Eq. (4.46a)

of Zachariasen’s book [37], we find Q
′
= 0.61 × Q. Anomalous absorption, discussed in

section 2.4, and shown in Fig. 3.4, is also found to be in good agreement with the theory.

Finally, the application of MOSAIC to diffraction by a crystal having an asymmetric

mosaic distribution, such as that in Eq. (3.1) is shown in Fig. 3.5.

3.1.2 Secondary extinction and multiple scattering

The presence of secondary extinction is the reason for the high integrated reflectivity of

mosaic crystals. This is due to the fact that the mosaic blocks are misoriented and the

beam penetration τext (not to be confused with text, the primary extinction depth) be-

fore extinction can be of the order of several mm, therefore large crystal volumes (when

compared to perfect crystals), can take part in diffraction. As the beam path before

re-emerging at the crystal surface is long, many scattering events can take place. This

multiple scattering phenomenon has nothing to do with the concepts discussed in section

2.3 as it concerns diffraction by the same set of Bragg planes. The presence of secondary

extinction and multiple scattering makes the reflectivity of the mosaic crystal dependent

on the crystal thickness. The optimal values for the thickness d can be calculated analyt-

ically [45] but a very precise estimation of the effects of multiple scattering can be done

only by simulating the diffraction process. In particular, neither the theory for the mosaic

crystal nor a ray-tracing simulation give numerical values for the number of scattering

events Nmulti in the crystal.

The task of calculating of Nmulti can only be carried out by using a full Monte-Carlo

simulation. Therefore, the MOSAIC code can be used not only as a crystal-module for any

neutron instrument simulation package, but also for studying the behaviour of important

parameters such as Nmulti which have a conceptual importance. In Fig. 3.6 we show the

secondary extinction depth τext for copper < 220 > in Bragg symmetric geometry as a

function of mosaicity η. The solid line represents theory, i.e. τext = sin θB/σ (with the

secondary extinction coefficient σ defined in section 2.4). The dashed lines with symbols
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are the simulation results: they were obtained by averaging the maximum penetration

depths reached by each reflected ray. As is obvious, if we perform the average only on

those rays which have been reflected after having undergone only one scattering event

(diamond symbols), we do not retrieve the theoretical extinction depth. We can conclude

that the simulation of multiple scattering with the MOSAIC program is very accurate.

The discrepancy at larger values of mosaicity is due to the smaller number of reflected

rays, which increases the statistical error. In Fig. 3.7 the histograms of rays versus the

maximum penetration depth τ are shown for all the scattering events (top) and for rays

with only one scattering event (bottom). These plots have only a ”didactic” purpose since

they shown that if we consider all scattering events, then extinction is not governed by

an exponential law (top). If, instead, only single scattering events are counted, then we

can fit the histograms with an exponential function (bottom) which, however, does not

give the real extinction cefficients. The number of multiple scattering events undergone

by the reflected rays, for several values of mosaicity and as a function of the maximum

depth reached inside the crystal, are shown in Fig. 3.8. We see that for a copper crystal

1 mm thick with a mosaicity of 0.1o in Bragg symmetric geometry at 1.8 Å, the number

of events can be of the order of ∼ 50 or more.
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Figure 3.3: Neutron reflectivity of copper versus (θ − θB), with θB = 44.8 o, η = 0.1 o, d

= 1 cm. TOP: Bragg geometry. The simulations were performed using several values for

the crystallite size: t = 2 µm (+ symbols), t = 5 µm (dotted line) and t = 10 µm (dashed

line). The analytical curves with Q′ = Q (solid line) and Q′ = 0.58×Q (long dashed

line) fit well the simulations with t = 2 µm and t = 10 µm respectively. BOTTOM: Laue

symmetric geometry.
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Figure 3.4: Attenuation for the same case reported in Fig. 3.3 (top).

Figure 3.5: Reflectivity of a copper crystal with an asymmetric mosaic distribution given

by Eq. (3.1). The two rocking curves correspond to the two perpendicular planes of

diffraction with ηs = 0.1 o (+ symbols) and ηp = 0.05 o (* symbols). The crystallite size

was 10 µm and the analytical curves (dotted and solid lines respectively) were calculated

using Q′ = 0.6×Q.
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Figure 3.6: Secondary extinction depth τext versus mosaicity η for copper with λ = 1.8

Å. Data correspond to the exact Bragg position for the Bragg symmetric geometry. The

analytic result is the solid line and the * symbols are the result of the simulation, obtained

as the averaged maximum penetration depth reached by the reflected particles. The results

with only one scattering event (diamond symbols) do not give the correct extinction depth.
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Figure 3.7: Histograms of the maximum depth τ reached by the reflected particles inside the

crystal at the exact Bragg angle and in Bragg symmetric geometry. TOP: the histogram is

the result of the simulation for all rays. The solid line is the fit with an exponential function

showing that this shape is not appropriate. BOTTOM: the histograms are the simulation

result for several values of mosaicity (increasing values of η from top to bottom). Only

rays having undergone one scattering event are considered. The exponential fit (dotted

lines) shows that for these rays the extinction law follows an exponential law.
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Figure 3.8: Number of scattering events Nmulti versus the maximum depth τ reached by the

reflected particles. These data correspond to the exact Bragg angle and Bragg symmetric

geometry. TOP: η = 0.05 o, 0.1 o and 0.2 o. BOTTOM: η = 0.35 o, 0.4 o and 0.45 o.
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3.1.3 Inhomogeneous crystals

The presence in mosaic crystals of regions in which the Bragg planes have a macroscopic

misorientation with respect to the nominal value, and also with respect to the usual mosaic

distribution, is a very common problem. In these cases a lower peak reflectivity and a

splitting of the Bragg peak can be observed. The first effect can be easily explained by the

reduced diffracting volume inside the crystal. Using the Monte Carlo method we can give

a rather precise estimation of it, if the shape and distribution of the inhomogeneities are

known. Let us suppose that the inhomogeneous zones have spherical shapes with radius

r (or with r following a given probability distribution) and are distributed randomly with

a number density N . We will use a general method for sampling the probability that

the particle trajectory meets one of these regions [66]. The probability of collision with a

sphere after travelling a short distance dx is

dp = Nσdx (3.2)

where σ = πr2 is the geometrical cross section. Then the probability p(x) that the particle

travels a distance x before meeting the sphere is

p(x) =
1

λ
e−

x
λ (3.3)

where λ = 1/Nσ is the mean free path. We can sample x using Eq. (3.3) and, when

the trajectory length equals x, determine what is the sphere position with respect to the

particle’s motion line, with the angles drawn in Fig. 3.9. The probability distribution for

α is [66]

p(α) = 2 sinα cosα (3.4)

α can vary between 0 and π/2, corresponding to tangential and head-on collisions respec-

tively. The angle γ is sampled uniformly in the interval (0, 2π]. The coordinates of the

center of the sphere are calculated and the propagation inside the sphere is followed in the

usual way, except for the fact that now a new sampling of the macroscopic misorientation

has to be carried out. When the particles exit the inhomogeneous region, the process of

sampling the path length before a new intersection is started again.

The plots shown in Fig. 3.10 are obtained by forcing the particle to meet one inhomo-

geneity immediately close to the incidence surface. When this condition is not applied,

the peak reflectivity is not decreased with respect to the theoretical value, but the tails

are still larger.
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Figure 3.9: Intersection between the simulated trajectory and the sphere representing an

inhomogeneity.

Figure 3.10: Diffraction profiles of copper with η = 0.1 o. The + symbols represent the ideal

homogeneous crystal and the other lines are the results for crystals with inhomogeneities

(i.e. regions with a larger mosaicity ηi =0.5 o) of spherical shape with r = 1 mm. The

different curves correspond to different inhomogeneity densities: 0.02 mm−3 (dotted line),

0.05 mm−3 (dashed line), 0.01 mm−3 (solid line).
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3.2 Ray-tracing using MOSAIC

The simulation results presented in this and the following Chapters were viewed and

analyzed using the graphical and manipulation tools of the x-ray simulation code Shadow

[28, 29] and its user interface ShadowVUI [2]. In order to do this the data files generated

by MOSAIC were re-written in the Shadow format and, in some cases, were used as a

Shadow input file for carrying out the ray-tracing from the crystal element to the image

plane or other instrument positions. This allowed: 1) linking MOSAIC to sources created

by Shadow; 2) re-tracing rays from the crystal to other planes, for instance to the image

plane; 3) visualising the beam characteristics using the powerful ShadowVUI graphical

tools. We will call Crystal the Shadow file containing the beam properties at the crystal

optical element and Image those at the image plane.

In order to understand the pictures which will follow, one has to remember that in Shadow

the reference frame changes from one optical element to the next and also from the optical

element to the image plane. In other words, the ray coordinates are always written in

a local reference frame in which: the x-axis is always normal to the scattering plane;

the y-axis is directed along the local optical axis in the case of image planes and lies on

the crystal surface in the case of a crystal element; the z-axis is always in the plane of

scattering, normal to the surface in the case of a crystal element.

This implies that the Crystal file is easily written by simply translating the MOSAIC data

file. The Image file, instead, is obtained by re-tracing the rays of Crystal to the image

plane, then by re-writing their coordinates and direction cosines in the new reference

frame.

The following sections report some ray-tracing results using MOSAIC as Shadow module.

3.2.1 Diffraction of a collimated monochromatic beam

When an ideal mosaic crystal and an ideally collimated and monochromatic incident beam

are set for exact Bragg reflection, the reflected beam will have the following properties:

1) intensity equal to the theoretical peak reflectivity; 2) divergence approximately equal

to the Darwin width in the plane of scattering; 3) divergence approximately equal to

δθ⊥ ∼ 2η sin θBragg in the perpendicular plane. Here we show the results for a 2 mm thick

Cu crystal with η = 0.2o. The theoretical peak reflectivity is r = 0.57. The simulated

intensity, normalised to the total number of events, is I/I0 = 5570/10000 = 0.557 with a

statistical error σI = 2.34%. The distribution of the reflected beam direction cosines are

shown in Fig. 3.11. The divergence in the scattering plane is approximately δθ‖ = 58 µrad,

which is the Darwin width of the crystallite. In the perpendicular direction it is equal
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to δθ⊥ = 4.68 mrad = 0.268o ∼ 2η sin θBragg . The average number of diffraction events

inside the crystal slab, at the peak position, is Nmulti = 10.3 and the average penetration

depth is < τ >= 1.25 mm. Following Zachariasen [37], if the effect of primary extinction is

neglected, the secondary extinction coefficient can be calculated as σext = Q×W (θ = θB).

In our case the theoretical value is σext = 6.69 cm−1, thus giving τext = 1.5 mm. This

value matches well with the simulation result for < τ >, as the order of magnitude is the

same and they are directly comparable from a conceptual point of view.

Figure 3.11: Reflected beam divergence for an incident collimated monochromatic beam.

The x-axis and y-axis represent respectively divergence in the direction perpendicular and

parallel to the diffraction plane. The Bragg angle is θB = 44.8 o. Units are radians. Note

the different scales in the horizontal and vertical axes.

3.2.2 Parafocusing properties of mosaic crystals

As shown in Fig. 3.12 flat mosaic crystals produce an interesting pseudo-focusing effect

in the plane of scattering in the presence of a monochromatic divergent incident beam

[67, 68]. This means that, if we use a point source and p is the source to crystal distance,

then the image at a distance q = p is a segment perpendicular to the diffraction plane.

An example is shown in Fig. 3.13 where we have p = q = 100 cm. The point source

emits rays in a cone of aperture α = 2o. Its image at a distance q from the crystal is a

approximately 0.3 cm wide and 8 cm high. The broadening is due to the finite crystal
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thickness (2 mm in the simulation). The image of the same kind of source, but with two

separated values of wavelength, can be observed in Fig. 3.14. A qualitative comparison

between the simulation and measured data for x-ray diffraction by HOPG is shown in

Fig. 3.15.

Figure 3.12: Schematic view of the parafocusing effect by mosaic crystals.



64 Numerical solutions for mosaic and bent crystals

Figure 3.13: Image of a point divergent monochromatic source. The x-axis and y-axis are

respectively parallel and perpendicular to the diffraction plane. Units are cm. The Bragg

angle is θB = 44.8 o.

Figure 3.14: Image of a point divergent monochromatic source with two wavelength lines.

Units are cm.
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Figure 3.15: Graphite < 002 >, λ = 0.86 Å, θB = 7.4 o. Image of a divergent and highly

monochromatic x-ray source. The source size is 30 µm.
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3.3 The BENT Monte Carlo code

The BENT code used for simulating the diffraction properties of bent perfect and bent

mosaic crystals is similar to the MOSAIC code described in section 3.1 for the undistorted

mosaic crystal. It has simply been modified in the part concerning the surface and Bragg

plane orientations. If we suppose that the crystal is cylindrically (and elastically) bent to

a radius R, then the deviation of the Bragg planes from the orientation they have in the

undistorted crystal will be [56, 69]:

ε =
|z|
R

(cot θ − ν tan θBragg) (3.5)

where θ is the ray grazing angle, ν the Poisson’s ratio and |z| the depth below the incidence

crystal surface. The first term on the right side of Eq. (3.5) is geometrical and the second

accounts for the fact that, if the crystal density stays constant, then there is a linear

variation of the d-spacing.

The code can also be used for simulating bent perfect crystals: in this case the ray

trajectory is no longer determined by interactions with the crystallite agglomeration as

described in section 3.1. The fundamental steps of the trajectory take place between

one perfect lamella and the next. The lamella thickness is an input parameter for the

simulation, it is a function of R, ν (deformation), Bragg angle and Darwin width, and

is calculated as in the lamellar model described in section 2.5.1. Then the fundamental

assumption is that each lamella is homogeneous, that it diffracts as a small perfect crystal

according to the dynamical theory, with the Bragg plane orientation following Eq. (3.5).

The BENT code can therefore also be used for gradient crystals, provided that Eq. (3.5)

is replaced by an expression accounting for the deformation due to the d-spacing gradient.

In this thesis we have not used this application for simulating gradient crystals, so we will

only report on the case of deformation due to bending.

Fig. 3.16 shows the reflectivity curve for a mosaic bent Ge crystal in Bragg symmetric

geometry. The bending radius is R = 5 m and the mosaicity is η = 0.03o. The primary

extinction depth inside the perfect undistorted crystal is text = 12 µm. The simulated

reflectivity using a crystallite thickness t = 2 µm is very well fitted by the theoretical

curve calculated with the layer coupling model.

In the case of bent crystals the analytical calculation of an equivalent secondary extinction

depth is not straightforward. However, as we did in section 3.1.1 for mosaic copper, we

can calculate the parameters < τ > and Nmulti, which are related to extinction. For the

exact Bragg angle (peak of the reflectivity curve in Fig. 3.16), the simulation gives an

average path length path = 1.9 mm and an average value for the multiple diffraction

events Nmulti = 1.5. The average penetration depth is < τ >= 0.76 mm. When compared



Numerical solutions for mosaic and bent crystals 67

to the copper data in section 3.1.2 (mosaicity η = 0.1o: approximately the same FWHM

and peak reflectivity as that of bent germanium, but a different Bragg angle), we see that

the values of < τ > are similar, but for bent germanium Nmulti is approximately two

orders of magnitude less.

3.4 Ray-tracing using BENT

In order to understand how resolution and intensity are changed when the crystal is bent

we will look at the reflected images obtained by using different kinds of sources. We will

always consider Ge < 311 > at 2.4 Å, bent to R = 7 m. The theoretical peak reflectivity

is r = 0.81 and the FWHM of the diffraction profile is w = 0.12o. The Bragg angle is

θB = 44.7o. This value for the Bragg angle has been chosen because the geometry is

similar to that of Cu < 220 > at 1.8 Å, with θB = 44.8o, analysed in section 3.2.1. Thus

we will do a short comparison between the two crystals without discussing the (different)

applications that they have in neutron instrumentation. Furthermore, we will not mention

the focusing effect of bent crystals, although this is of primary interest when they are used

as monochromators.

3.4.1 Diffraction of a collimated monochromatic beam

When a bent crystal and an ideally collimated and monochromatic incident beam are set

for exact Bragg reflection (with respect to the crystal pole), the reflected beam will have

an intensity equal to the theoretical peak reflectivity only in the limit of a pencil incident

beam. When the beam size increases the intensity decreases due to the fact that the

correct orientations of Bragg planes for different parts of the beam are found at different

depths and at different positions in the crystal plane. Therefore, absorption plays an

important role and there may be particles which never meet the Bragg condition due to

the finite crystal thickness. These restrictions are less important when the crystal has

a mosaicity, as in the case of our simulations, because the effect of mosaicity is that of

”convoluting” the reflectivity of the small perfect lamellae of which the crystal is composed

(according to the schematization used in the model) with the mosaic distribution. The

simulation with a circular source of radius ρ = 5 mm gives a normalised intensity equal

to I/I0 = 10840/25000 = 0.43 with a statistical error σI = 1.59%, where the theoretical

peak reflectivity is r = 0.81. The reflected beam divergence is δθ ∼ 0.1o in the directions

both parallel and perpendicular to scattering. If we use a source with ρ = 1 mm then the

reflected intensity is I/I0 = 17437/25000 = 0.7, much closer to the theoretical value. The

divergence along the diffraction plane is much lower than before: δθ ∼ 0.0355o.
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3.4.2 Diffraction of a polychromatic divergent incident beam

In order to compare the intensity and resolution diffracted by a mosaic crystal and a bent

crystal, we have to choose: 1) realistic values for the properties of the source, i.e. wide

enough wavelength and angle ranges; 2) similar geometrical conditions, i.e. Bragg angles.

For the sake of simplicity we will always use a point source. In a full simulation of an

instrument or part of an instrument the actual source size has to be used instead. As

mentioned before, this is just an example of the possible applications of the MOSAIC

and BENT codes, not at assessment of the general performance of the two types of

crystals, since they have different purposes. The crystal parameters, theoretical peak

reflectivities and angular widths, and the simulation results, are shown in Table 1. The

two crystals have comparable theoretical peak reflectivities, but the germanium diffraction

profile is ∼ 60% that of copper. The integrated diffracted intensities as obtained by the

simulation are IGe/ICu ∼ 60% (see column n0 10), and the resolution is better in the case

of germanium.

Table 1. Comparison between intensity and resolution of the beam diffracted by mosaic

copper and mosaic bent germanium. The source is non monochromatic, with an incident

wavelength spread of ± 3 %. It emits 25000 rays following a conical angular distribution

with aperture α = 2.64 o. The last three columns are the simulation results: normalised

intensity, angular and wavelength spread of the reflected beam.

Crystal λ θB R η Theor. peak Theor. width I/I0 ∆θ ∆λ/λ

Å deg m deg reflect. deg deg %

Cu 220 1.8 44.8 ∞ 0.1 0.79 0.19 0.023 1.2 3.5

Ge 311 2.24 44.7 7 0.05 0.81 0.12 0.014 0.81 2.2
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Figure 3.16: Reflectivity of a bent mosaic germanium crystal versus (θ − θB) in Bragg

symmetric geometry. R = 5 m and η = 0.03 o. The + symbols are the simulation result

and the solid line is the diffraction profile calculated using the layer coupling model.
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3.5 Summary and conclusions

One of the aims of this thesis is to try to improve the existing methods employed for

describing neutron diffraction by crystal monochromators or analyzers. Accurate and

intensive calculations are needed for the simulation and optimisation of neutron instru-

ments. The theoretical models described in Chapter 2 and the derived equations may be

not sufficient for these purposes, because they use some assumptions that are not gener-

ally satisfied. Moreover, they describe only partially the crystal behaviour, for example

they allow computing the diffracted intensity, while other important parameters as the

beam penetration into the crystal, the change in beam divergence, etc. are not available.

In this Chapter we have tried to develop general methods for accurately describing the

imperfect crystals of interest for neutron optics. We have presented two codes, the first

one to simulate neutron or x-ray Bragg diffraction by mosaic crystals, and the second for

bent (perfect or mosaic) ones. Their extension to gradient crystals has not been discussed,

but is straightforward.

The technique we exploit is the full Monte Carlo method to solve the transport equations.

Therefore, our codes allow us to control all the geometrical and physical parameters

governing scattering by the crystals. The main application is the modelling of the crystal

element in a neutron scattering instrument and we will describe the results of the new

Strain Imager instrument simulation in the next Chapter. This code could be integrated

in new or existing ray-tracing codes, and it is supposed to be more accurated than existing

”macroscopic” models. Our MC code has been fully benchmarked against the analytical

models described in Chapter 2. It can also be used to model crystal inhomogeneities, an

option that is not available in analytical models. Moreover, we show that it can be applied

to some cases which probably cannot be simulated by simple ray-tracing. In this Chapter

we have shown the case of the parafocusing effect of mosaic crystals, by comparing the

simulations with the experimental x-ray data. In Chapter 6 we will use the MC code to

analyze the shape of x-ray diffraction topographs, obtaining a very good agreement with

the experiments.



Chapter 4

Simulation of the Strain Imager

instrument

4.1 The Strain Imager instrument at the ILL.

The new Strain Imager instrument at the ILL, which is being built on the H22 guide, will

be a high resolution diffractometer allowing the measurement of strain in materials [71].

The neutron strain scanning technique is a powerful tool for the determination of residual

stress in materials and mechanical components. The method exploited by this technique

is the measurement of the displacement δθ of a given Bragg peak in the crystal bulk,

caused by a strain ε. By differentiating the Bragg’s law, one sees that strain is related to

δθ and to the the strain-free Bragg angle θB, 0 by the relation:

ε =
dH − dH, 0
dH, 0

= −δθ cot θB, 0 (4.1)

The high penetration depth of neutrons in materials allows measuring strain in small and

big samples, which may be of interest for material scientists (new materials development)

and for industrial users (control of component treatments as hardening or welding).

The requirements for a strain imaging instrument are high flux and good angular reso-

lution for the beam at the sample and expecially at the detector position. The angular

resolution is needed for separating neighbouring peaks and for precisely determining their

position. Moreover, the gauge volume, i.e. the diffraction volume “seen” by the incoming

beam and contributing to the diffracted beam reaching the detector, has to be carefully

determined. A schematic layout of the Strain Imager is shown in Fig. 4.1: the beam,

transported by the guide and monochromatized by the crystal monochromator, is then

71
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focused at the sample position by a radial Soller collimator made of absorbing blades;

the slit after the sample selects a portion of the diffracted beam which hits the position

sensitive detector. The shape of the gauge volume is determined by the optical elements

before the sample (primary optics) and by the slit (or collimator, depending on the design)

after it. The ideal monochromator for this instrument would be a perfect crystal with

a d-spacing gradient or with elastical bending. This would eliminate the disadvantages

of mosaic crystals: large penetration depth with consequent large absorption and the

reflected beam affected by the possible inhomogeneities in the mosaic distribution. The

production of crystals with a suitable gradient cannot yet be achieved. Hence, a possible

choice is that of bent crystals. These crystals allow focusing the beam at the sample

position, but strongly influence the angular (and energy) resolution. Current technology

allows bending silicon and germanium with success. Previous studies of the instrument

efficiency have suggested which reflections, bending radii and crystal dimensions have to

be used [72, 73, 74, 75]. For the most used samples, a wavelength range from 1.5 to 3.5 Å is

suitable. The monochromator Bragg angles suitable for residual stress analysis lie between

35o and 60o. In order to fit these needs to the geometrical constraints (limited crystal

length) and to the resolution requirements (depending both on the monochromator and

sample Bragg angle) two crystals have been chosen: a mosaic germanium < 422 > and a

perfect elastically bent silicon < 111 > made of a ”packet” of 4 crystal wafers 2 mm thick.

Elastic bending, without mosaicity, becomes inefficient in some geometrical conditions,

i.e. when the angle between the Bragg planes normal and the incident beam direction, is

small. In these conditions the incident beam does not ”see” the bending of the diffracting

planes, hence the integrated reflectivity is small. For this reason, the germanium crystal

will have a mosaic spread η = 6′ (FWHM). Other Bragg planes, with asymmetric angles

α with respect to the crystal surface, might be used for the germanium crystal. The

asymmetric cut allows to condense the reflected beam or to use a more extended crystal

monochromating volume depending on the value of α (the so-called Fankuchen and anti

Fankuchen set-ups).

In the following discussion and calculations we will not deal with vertical focusing. This

is necessary for focusing in the vertical plane at the sample position, but does not, to

a first approximation, influence the energy resolution and the angular resolution in the

scattering plane.

The equations governing vertical and horizontal focusing by a bent crystal can be written

by assuming simple specular reflection from the lattice planes [76, 77, 78]. This model,

which is only valid to a first order, says that a perfectly monochromatic beam, emitted

by a source placed at a distance p from the crystal, is focused at a distance q according

to the equations:
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Figure 4.1: Schematic layout of the Strain Imager as seen from the top. The design of

the radial collimator before the sample and of the slit just after it allow choosing a well

defined scattering volume inside the sample.

1

p
+

1

q
=

sin θ1 + |sin θ2|
Rs

(4.2)

sin2 θ1
p

+
sin2 θ2
q

=
sin θ1 + |sin θ2|

Rt
(4.3)

In the previous equations θ1 and θ2 are the incoming and outgoing angles, measured with

respect to the crystal surface; Rs and Rt are the radii of curvature in the sagittal and

tangential planes. As we do not consider vertical focusing, Rs = ∞. The application

of the Eqs. (4.2) and (4.3) to neutron beams is seldom possible. The reason is the

uncertainty in the position at which the effective source is placed. It could be possible

to use, as source to crystal distance p, the end of guide or the beam shutter position. In

this case we would have p = 9 m. However, this would be justified only in the pinhole

approximation, i.e. with the source defined by a thin aperture. This is not our case

because the beam is 3 × 20 cm wide, then the crystal sees a source which is difficult to

model, as it depends on the full neutron path before exiting the guide. In order to give

an idea of the tangential bending radius needed to focus the beam at the sample position

(q = 2.2 m), we give in Table 1 the Rt values obtained by applying Eq. (4.3) to some

typical values of the monochromator Bragg angle. These values were calculated for the

Bragg symmetric geometry and for p = 9 m and p = ∞.
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Table 1. Values of the curvature in the scattering plane obtained using Eq. (4.3). The

image to monochromator distance is q = 2.2 m and the Bragg planes are parallel to the

crystal surface. The Bragg angles (in the second column) correspond to Ge <422>.

λ Bragg angle Rt [m] Rt [m]

Å [deg] for p = 9 m for p = ∞
1.2 31.3 6.8 8.5

1.4 37.3 5.8 7.3

1.6 43.85 5.1 6.35

1.8 51.2 4.5 5.65

Of course, focusing and performance of the monochromator (in terms of reflectivity and

resolution) depend not only on Rt, but also on other effects such as non monochromaticity

of the incident beam, crystal mosaicity and finite thickness. The angular spread ∆θ of the

beam after the monochromator is determined by the divergence of the incident beam, the

radius Rt, the mosaicity η and the crystal thickness. The energy resolution is then ∆λ/λ =

cot θB ∆θ (without considering the smaller effect of the d-spacing spread). Moreover, the

final intensity and resolution at the detector depend on the effect of the radial collimator

and slits and on the sample scattering angle. This shows that an assessment of the

behaviour of the instrument is not straightforward. As we said in the Introduction, there

exist both graphical and analytical methods which are able to calculate these parameters.

Just to give an example, Cussen [79] has developed a very useful pictorial view of the

resolution of neutron scattering instruments, produced using phase-space calculations.

However, these methods are not able to account for other effects coming from neutron

diffraction in the real monochromator crystal. For this reason the instrument design has

already been optimised by using ray-tracing techniques [72]. In the next section we will

describe our simulations.

4.2 The simulation

The diagram in Fig. 4.1 shows the elements which the Strain Imager is composed of

and which have to be simulated. This has already been made by Saroun and Pirling

[72] by means of ray-tracing using the RESTRAX program. They have simulated the

following elements: a curved supermirror guide made of several sections and with the

coating allowing an increase of the angle of total reflection by a factor of two (m=2)

when compared with the existing Ni coated guide (m=1) ; the monochromator crystal;

the oscillating convergent Soller collimator between monochromator and sample; the ideal

polycrystalline sample; the slit between sample and detector.
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We made more simulation on a general scale. We focused our attention on the following

cases: 1) the dependence on the crystal bending of the intensity and angular resolution

of the beam diffracted by the crystal and transmitted by the collimator. The simulations

were performed for mosaic bent germanium < 111 > at a monochromator Bragg angle

θMB = 40o. 2) the intensity and the resolution (in energy and angle) at the sample and

detector for a bent mosaic germanium < 422 > in the wavelength range [1.2− 1.8] Å and

for two values of mosaicity η. This wavelength range is interesting for the instrument

applications.

In this section, we describe the simulation of each optical element. The simulation results

will be shown in the next section.

The effective source. This is the starting point for the simulation. As we do not simulate

the guide, our source is placed at the end of the guide. As specified in the internal

reports, the incident beam will have a width of 30 mm and a divergence of ∼ 0.4o,

depending on the wavelength and with an almost flat angular distribution [80]. Apart

from this, in our simulations, the polychromaticity of the beam is included by choosing also

a flat wavelength distribution for the incident beam. The λ range is obviously sufficiently

extended for covering all the energy band-width of the primary optics. We use Shadow

[28] to generate the source and to trace the polychromatic, extended and divergent beam

up to the bent crystal monochromator.

The monochromator. The bent mosaic crystal monochromator is simulated using the

BENT Monte Carlo code described in section 3.3. We recall that this program can

be used for both perfect and mosaic bent crystals. In the present case, i.e. mosaic,

it reproduces the reflectivity calculated by using the layer-coupling model. The input

parameters are Bragg angle, crystal thickness (no lateral limits were set, although this

would be necessary), crystal bending radius, mosaicity, absorption coefficient and the size

of the microscopic crystallite. This parameter was set to 1 µm in all the simulations.

The collimator. In order to have a better focus at the sample, the monochromator is fol-

lowed by a converging collimator made of 44 channels with completely absorbing blades.

This is 0.45 m long and its entrance is placed 1.4 m from the crystal monochromator.

The blades are 0.08 mm thick and are separated by 2 mm at the entrance and 0.5 mm

at the exit. The range of angles accepted by the channel is then approximately ±0.16o.

The global field of view of the collimator is of 8o. The entrance surface is 8.8 cm wide.

Moreover, in order to eliminate the beam pattern at the collimator exit due to the ab-

sorbing blades, it oscillates by ±1o around the zero position. We simulate the collimator

in the following way: the rays, after diffraction by the crystal, are traced until they meet

the planes corresponding to the collimator entrance and exit. The equations of the points

belonging to these planes and corresponding to the collimator channels are written. The
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good rays, i.e. those transmitted by the collimator, are found by requiring that they

cross the two planes while belonging to the same channel. This method neglects the fact

that the real absorbing blades may have a non-zero transmission probability. Concern-

ing the oscillations, these have been included by repeating the calculation we have just

discussed over 100 different angular positions of the collimator, covering a range of ±1o.

The resulting transmitted beam is therefore the average over 100 similar calculations.

The sample. It is essential, for this kind of instrument, to know the resolution at the

detector. For this reason the sample and slit also have to be simulated. The sample is

treated as a perfect polycrystal. We assume that the it has a size of 4 mm. The first step

for simulating the sample is the calculation of a random penetration depth for each ray.

We simulate the sample Bragg peak located at a scattering angle of 90o. The nominal

sample Bragg angle is then θs,NB = 45o, the d-spacing is fixed to dH = λN/2 sin θs,NB , with

λN being the nominal wavelength. The actual Bragg angle for each ray is easily calculated

by using its wavelength: θsB = sin−1 (λ/2 dH). The second step in the calculation is the

rotation of the direction of each ray by an angle 2θsB in the horizontal plane.

Finally, the slit, 1 mm large, is used for defining the sample diffracting volume ”seen” by

the detector.

The simulation results will be shown in terms of intensity I/I0, with I being the number

of rays weighted by absorption and I0 the number of rays in the source. Moreover, the

typical widths of the spatial, angular and wavelength distributions will be characterised

by the FWHMs ∆x, ∆θ and ∆λ, respectively.

4.3 Efficiency and resolution versus bending radius

and wavelength

The germanium < 111 > monochromator versus Rt. In the first part of this section

we show how the intensity and resolution at the sample position are influenced by the value

of the crystal bending radius Rt and by the presence of the collimator. The case discussed

here is that of a germanium < 111 > monochromator at λ = 4.2 Å, with the Bragg angle

θMB = 40o. We will show how intensity and resolution are influenced by Rt and by the

presence of the collimator. The results of the monochromator and collimator simulation,

as a function of the bending radius, are summarised in Fig. 4.2. The intensity, wavelength

spread (not shown) and angular divergence of the beam diffracted by the monochromator

monotonically decrease with increasing Rt. The angle and wavelength resolution reach

the asymptotic value, that they would have in the case of a flat crystal, for Rt = 21 m.

The smallest beam size at the sample position, without the collimator, at 2.2 m from the



Simulation of the Strain Imager instrument 77

crystal, is achieved for Rt = 5 m and is equal to 1.5 cm (see the image on the top of Fig.

4.3). Then the best focusing conditions are met for Rt = 5 m. As shown in the image on

the bottom of Fig. 4.3, for Rt = 5 m, the collimator reduces the width of the beam at

the sample position to ∼ 1 mm.

The width (FWHM) of the beam impinging on the collimator entrance ranges from 1

to 2.5 cm (the total width instead ranges from 3 to 6 cm) depending on Rt. It is clear

that, in this geometry, not all of the collimator surface is used. The histograms of the

transmitted angles before and after the collimator, shown in Fig. 4.4, demonstrate that

the collimator reduces the beam divergence only for Rt ≤ 5 m. For larger values of

Rt the angular spread is not decreased. On the other hand, the intensity decreases (see

Fig. 4.2) because of the focusing effect. In practice, the collimator absorbs those neutrons

whose trajectory does not fulfill the focusing conditions. The absorbed neutrons are those

whose diffraction by the crystal monochromator suffers the effects of mosaicity and finite

thickness. The collimator geometry is optimised for a bending radius of approximately

5.5 m: the histograms in Figs. 4.4 and the plot of intensity in Fig. 4.2 show that, for

Rt ≥ 5 m, the number of neutrons passing through the collimator decreases dramatically.

For Rt = 5 m the transmitted intensity ratio is Icoll/Imono ∼ 4%.
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Figure 4.2: Intensity I/I0 and angular spread versus the tangential bending radius Rt.

The + symbols represent the beam reflected by the monochromator and the ∗ symbols

that transmitted by the radial collimator. The intensity after the monochromator and

collimator have respectively the maximum values Imono/I0 = 7.86 % (for Rt = 3 m) and

Icoll/I0 = 0.252 % (for Rt = 5 m). The crystal is Ge <111> with θMB = 40 o.
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Figure 4.3: Beam spot at the sample position without (top) and with (bottom) the col-

limator. The x-axis corresponds to the scattering plane, the y-axis to the perpendicular

one. Note the change in scale between the two figures. The histograms show the beam

distribution with and without the weight due to absorption. Units are cm. Rt = 5 m.
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Figure 4.4: Normalised histograms of angular spread before (solid line) and after the radial

collimator (dotted line). The angles are calculated with respect to the optical axis, i.e. the

normal to the image plane. The crystal is Ge <111> with θMB = 40 o.
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The germanium < 422 > monochromator versus λ and η. In Fig. 4.5 we show the

theoretical rocking curves, calculated using the layer-coupling model discussed in section

2.5.2, for λ = 1.2 (θB = 31.3o) and 1.8 Å (θB = 51.20). The bending radius is Rt = 7 m.

The plots show that, for a mosaicity η = 1′, the width and shape of the diffraction profiles

are determined by the bending of the Bragg planes. The peak reflectivity increases with

increasing λ, while the FWHM descreases. When mosaicity is important, η = 6′, the

diffraction profiles hardly show the effect of bending.

Figure 4.5: Theoretical reflectivity of germanium <422> with Rt = 7 m at λ = 1.2 Å (left)

and 1.8 Å (right). The crystal thickness is d = 0.6 cm and mosaicity is η = 6’ (solid lines)

and η = 1’ (dashed lines).

The simulations were made for λ = 1.2, 1.4, 1.6 and 1.8 Å with a source emitting rays

in a wavelength range of ±0.05 Å about λ. The average incident angular spread was

∼ 0.17o with a slight variation with λ, which should approximately reproduce the guide

simulation results [80]. The intensity and resolution (in angle and energy) versus λ, for

two different values of mosaicity, are shown in the Figs. 4.6 and 4.7. The intensity at the

sample and detector monotonically decreases with increasing λ, i.e. the monochromator

Bragg angle. The strong improvement of resolution observed at the detector for higher λ

is produced by two effects: 1) the increasing Bragg angle of the monochromator, which

increases the crystal intrinsic resolution from 0.93o at λ = 1.2 Å to 0.61o at λ = 1.8 Å

(−34%); 2) the focusing effect by the sample [79]. The increase of the scattered intensity

of about 30 to 60% is compensated by a poorer resolution, −25% to −28%, when going

from η = 1′ to η = 6′.
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Figure 4.6: Intensity I/I0 versus λ diffracted by the bent mosaic Ge <422> monochro-

mator (left), transmitted by the collimator at the sample position (center) and hitting the

detector after scattering by the sample (right). The crystal monochromator thickness is 6

mm and mosaicity is η = 6’ (solid lines), η = 1’ (dashed lines).

Figure 4.7: Angular resolution ∆θ (left) and wavelength resolution (right) versus λ at the

detector. The solid line represents the case with η = 6’, the dotted line with η = 1’.
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4.4 Summary and conclusions

In this Chapter we have shown an application of the BENT monte Carlo code to the

simulation of a complete instrument. The complication arising from other optical elements

other than the crystal (the radial collimator) and the presence of the sample (which has

to be simulated in order to know the final resolution) make the Monte Carlo technique

valuable for this kind of calculation. The Strain Imager instrument will work, in principle,

in a wavelength and angular range much wider than that analysed here. For this reason

our results are limited and should be extended. Nevertheless, they show the following

points:

1) There is an optimum value for the horizontal bending radius, which can be calculated

with our BENT code.

2) A large mosaicity of the germanium crystal may not help improving the performance

of the instrument, expecially if we take into account that the real reflectivity of plastically

deformed mosaic germanium (cfr. Chapter 6) does not agree with the theory.

3) The distribution of the beam at the sample calculated here corresponds to the triangular

shapes measured in [81] and gives better details than the geometrical calculation presented

therein. Furthermore, we have shown how big is the loss in intensity necessary to obtain

the spatial resolution needed on a strain scanner instrument. All these elements may give

a valid input for the instrument design.

Further work could be done for making the complete simulation code for this instrument

more flexible and easy to use by other users. As we have mentioned, similar and more

complete calculations were performed using the RESTRAX [22] code. The comparison of

that work with ours would be very useful and instructive.
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Chapter 5

Experimental - Copper

As was stated in the Introduction, one of the aims of this thesis was to assess the limits

of applicability of the crystal models described in Chapter 2 and to develop Monte-Carlo

algorithms able to give a precise description of real crystals. In this Chapter we will

focus on the experimental reflectivity of mosaic copper. The temperature dependence

of the attenuation coefficient and its influence on the low temperature reflectivity will

be reported first. Then, an x-ray study of the homogeneity and limited ideality of two

samples will be discussed.

5.1 Introduction

Artificial mosaic crystals are produced by different fabrication processes. Highly oriented

pyrolitic graphite (HOPG) is a layered structure manufactured by decomposition of a

hydrocarbon gas at very high temperature in vacuum: it has been found that its reflec-

tivity is affected both by inhomogeneities of the mosaic structure and primary extinction.

Copper mosaic crystals can be obtained by plastic deformation of grown crystals at room

or high temperature. Recently a new technique, the onion-peel method [82], has been

developed at the ILL for the production of copper monochromators with an anisotropic

mosaic distribution. Other methods exist for the production of deformed germanium

monochromators. Perfect germanium wafers are deformed by alternate bending in a fur-

nace and then assembled to obtain the desired thickness and mosaicity. In other cases,

the wafers can be assembled to a cylindrical shape with virtually negligible mosaicity.

As the presence of dislocations or other kinds of defects depends on these processes, the

diffraction properties will be different and will only partially agree with theory. In many

cases, modelling may be improved by considering a layered mosaic structure [83]. The

reference [13] contains an overview and a discussion of the non-ideality of artificial mosaic

85
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crystals.

Our measurements were performed with both x-rays and neutrons because we had several

purposes:

1) Record rocking curves and compare them with theory, in order to verify the crystal

quality and the applicability of the models for these crystals.

2) Study the effect of the crystal temperature on neutron diffraction, in order to improve

the monochromator efficiency by cooling the crystal.

3) Analyse the homogeneity of crystals by means of x-ray topography and by recording

rocking curves at different positions.

The high degree of collimation and monochromaticity presented by third generation syn-

chrotron radiation beams allows the measurement of diffraction profiles in almost ideal

conditions. Moreover, using the small size of the beam, one can measure the diffracting

properties on a very small scale: this means that we can see details that a neutron beam

does not see because of large size and divergence. In the case of bent crystals, finally,

the measured rocking curves are the result of the convolution of the large divergent inci-

dent beam and the crystal reflectivity. Thus, using the synchrotron beam, it is easier to

compare the measured rocking curves with the calculated diffraction profiles.

In the next Chapter the X-ray reflectivity of assembled germanium crystals and HOPG

will be reported. The measured samples will be identified by abbreviated names, i.e.

Cu-A, Ge-A. Some details are reported in Table A. All the data were measured in Bragg

symmetric geometry, except for the neutron reflectivity experiments as a function of

temperature, which were in Laue geometry.

Table A. Samples analysed. The copper and germanium crystals were produced and

assembled at the ILL monochromator laboratory. The experimental data on germanium

and HOPG are reported in Chapter 6.

Name Material Thickness Mosaicity Bending Production Instruments

[mm] [arcmin] radius [m] and ref. no

Cu-A Copper 8 3 none ILL IN1, T13A

Cu-D Copper 6 8 none ILL 165-3 ID15A

Cu-E Copper 6 13 none ILL 165-2 ID15A

HOPG HOPG 0.5 19 none Optigraph BM5

Ge-A Germanium 10 1.4 5.7 ILL assembled T13A, ID15A

Ge-B Germanium 10 5 none ILL assembled T13A, ID15A
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5.2 Experimental stations

A simple diagram of the set-up used for measuring the crystal rocking curve R(θ− θB) is

shown in Fig. 5.1: the detector was kept at a scattering angle equal to 2 θB and the crystal

was rotated around the exact Bragg position. In order to measure the beam attenuation

in some cases the detector was placed in front of the incident beam and the transmitted

intensity T (θ−θB) was recorded. The profiles were normalized by measuring the incident

beam intensity after removing the crystal. The neutron tests were performed at the IN1

Figure 5.1: Schematic diagram of the geometry used for recording curves of reflected or

transmitted intensity. The Y axis is parallel to the crystal surface.

[84], T13A and T13C instruments of the ILL. In all these experiments we simply recorded

the reflected or transmitted intensity as a function of the crystal rocking angle. IN1 is a

hot neutron inelastic spectrometer, but in our experiment, we did not perform any energy

analysis. Thus the instrument was used as a simple two axes machine. The beam was

collimated to 30
′

before and after the sample. We used IN1 for recording the mosaic

copper reflectivity at high neutron energy as a function of temperature, so the sample

was mounted in a He displex cryorefrigerator. T13A and T13C are two axes instruments

used for crystal tests: they are equipped with germanium and silicon perfect crystal

monochromators using several sets of Bragg planes. Therefore it is usually possible to

choose a monochromator orientation having the same d-spacing as that of the sample.

This is essential when we want to avoid the effect of beam divergence on the measured

reflectivity. The beam size was reduced by the use of absorbing diaphragms after the

monochromator. Thanks to the low flux at T13A and T13C, it was always possible to

measure the incident beam intensity. Thus the rocking curves could easily be normalised
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and we will always present them on an absolute scale. This could not be done at IN1,

where the high flux prevented a reliable measure of the incident beam.

The x-ray measurements on copper and germanium were performed at the beamline

ID15A of the ESRF [85], where x-rays with energies typically higher than 80 keV are

available. The use of high energy photons has the advantage of decreasing the atten-

uation due to the photoelectric absorption. On the other hand, Compton scattering is

more important at these energies: see Fig. 5.2 for details of attenuation as a function

of energy. The x-ray source of ID15A is an asymmetric wiggler. The white beam was

monochromated by a perfect bent silicon crystal in Laue geometry. The energy resolution

∆E/E was of order ∼ 10−3.

Figure 5.2: Photoelectric (solid line) and Compton (dotted line) attenuation coefficients

for copper and germanium as a function of the x-ray energy.

A pictorial view of the method of recording diffraction topographs is reported in Fig. 5.3.

The incident x-ray beam width is defined by absorbing slits to a few tens of µm. The

Bragg diffracted beam is recorded using a CCD camera perpendicular to the reflected

beam. In principle, if an incident lamellar beam is used, the camera records the intensity

diffracted by the Bragg planes along the beam path in the crystal bulk. In practice,

however, the beam has a finite width and the image will be the convolution of the finite

beam size and the local crystal properties. If the crystal is homogeneous so will the image

be, except for a decrease of intensity measured in the direction of scattering because of

attenuation and secondary extinction.

The x-ray reflectivity of graphite and quartz were measured at the BM5 beamline at ESRF

[86]. The source is a bending magnet with a critical energy of 20 keV. The beamline was

equipped with a flat double crystal Si <111> monochromator (giving an energy resolution

of about ∆E/E ∼ 10−4) placed 30 m from the source. The sample was mounted 40 m from

the source on a three axes diffractometer using the horizontal plane as the diffracting plane.
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The divergence of the beam in the scattering plane could be considered as negligible.

Figure 5.3: Schematic diagram of a topographic image recording. The dotted line repre-

sents the part of the beam which is diffracted after propagating in the crystal bulk. The

schematic profile drawn at the bottom is obtained by integrating the image pixel values

and represents the attenuation of the diffracted beam due to secondary extinction and

absorption.



90 Experimental - Copper

5.3 Temperature effects on the neutron peak reflec-

tivity

The typical extinction lengths in mosaic crystals are of the order of some mm. The peak

and integrated reflectivities of these crystals are strongly dependent on the attenuation

coefficient µ, as it can be seen looking at Eqs. (2.21) and (2.23). For thermal neutrons,

in crystals usually employed as monochromators, the µ values are fractions of cm−1. An

important contribution to the attenuation coefficient comes from the true absorption by

nuclei. We have already mentioned that there are other effects which are responsible for

the decrease of the beam intensity: parasitic Bragg scattering (see the end of section 2.3)

and thermal diffuse scattering (see section 2.6). In this section we want to describe some

measurements of reflectivity and attenuation as a function of temperature. The data

analysis was done by using the temperature dependent attenuation (and reflectivity) as

discussed in Chapter 2. We did not compute the effect of parasitic Bragg reflections and

this is probably the reason for the disagreement with theory.

The reflectivity of a copper single crystal (sample Cu-A) as a function of temperature was

measured on the hot neutron three axes spectrometer IN1 (T = [15K, 285K]) and on the

T13 diffractometer (T = [77K, 289K]) of the ILL [87, 88]. The goal was to measure both

the attenuation coefficient µ and the diffracted intensity as a function of temperature. The

crystal had previously been characterised on the hard x-ray Laue diffractometer at the

ILL [89] and its mosaicity was 3’. The crystal thickness was d = 0.8 cm. Measurements

have been performed at 48 meV (λ = 1.3 Å), 100 meV (λ = 0.9 Å) and 250 meV

(λ = 0.57 Å) in Laue geometry. The experimental conditions have been described in

section 5.2. As was shown in section 2.6, for neutron energies above the crystal Debye

energy ED = KBTD ∼ 26 meV for copper, the predominant part of the attenuation

comes from multiphonon scattering, if the effect of parasitic reflections is neglected. The

decrease of absorption (with consequent increase of reflectivity) due to phonons is more

important at higher neutron energies and of course at low temperature. The values of

measured and calculated gain in the peak reflectivity at low temperature, with respect to

the room temperature reflectivity, are reported in Table 1. The values in the third column

were calculated using, for the absorption cross-section, the Freund’s model in Eq. (2.49)

for multi-phonon absorption. Those in the last column were obtained using the numerical

integral of d2σ/dΩdE
′
as reported in Eq. (2.59). By looking at the values in Table 1 and

the multi-phonon scattering cross-section plotted in Fig. 2.11 we may conclude that the

multi-phonon cross section, calculated in the frame of the incoherent approximation, is

underestimated at E = 48 (these data are discussed later in this section) and 100 meV,

thus in the following we will consider only Freund’s model. The data measured at E = 250

meV disagree with the formulas in both cases, although a good agreement is found for
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the < 331 > asymmetric reflection.

Table 1. Measured and calculated increase of the neutron reflectivity for copper at 77 K

for E = 48 meV (T13 data) and at 15 K for E = 100 and 250 meV (IN1 data).

Reflection Energy Experiment Freund’s model Approximated

meV multi-phonon

220 48 12% 17% 3%

100 18% 24% 13%

250 18% 35% 33%

331 100 31% 34% 14%

250 33% 55% 35%

Fig. 5.4 shows the peak reflectivity vs. temperature for the < 220 > and < 331 >

reflections. A scale factor was used in order to compare the behaviour of the measured

reflectivity as a function of T to the theoretical calculations. We also tried to fit the

data using Eqs. (2.21) for the reflectivity and (2.49) for the absorption, letting the C2

parameter free. As is explained in [62] C2 is an euristic parameter which depends only

on the crystal material and not on any other quantity such as energy or Bragg planes.

According to the same paper C2 = 12 Å−2eV−1 for copper. The fit parameter we obtained

was C2 = 8.7 Å−2eV−1 at 100 meV and C2 = 2.6 Å−2eV−1 at 250 meV for both < 220 >

and < 331 >. This was of the same order as that reported in [62] at 100 meV, but much

smaller at 250 meV, for both reflections. As the C2 coefficient should not depend on E

we can conclude that a fit of these data is not possible and this is the reason why, in Fig.

5.4, we report only the scaled reflectivity, without fit.

Fig. 5.4 shows that the agreement with theory is better at 100 meV than at 250 meV,

and that at both energies it improves for the < 331 > reflection. The only difference

between < 220 > and < 331 > is the crystal orientation with respect to the beam: the

neutron path in the < 331 > case is longer because of the asymmetric angle formed by the

Bragg planes and the crystal surface. The longer path makes absorption more important

and the reflectivity increase is larger than for the symmetric < 220 > reflection. For all

measurements, excepting < 220 > at 250 meV, the data are well fitted only for T ≥ 150K.

The disagreement at lower temperature is not easily understood. There could be several

reasons. From the theoretical point of view, the calculation of the Debye Waller coefficient

and the phonon cross-sections depends on the density of states. For all the calculations

the Debye approximation has been used. However, we have also used the copper density of

states as calculated by the Born-von Karman model, but the final result does not change.

Probably the discrepancy with theory is due to the presence of multiple Bragg reflections:

this is confirmed by the better agreement found at lower energy, where parasitic reflections

are less important. This indicates that the efficiency of cooled monochromators for short
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wavelength neutrons may not be as good as theoretically calculated.

The need to decrease and control the amount of multiple reflections drove us to repeat the

measurements at lower energy. To this end, we used the T13A diffractometer at the ILL

with 48 meV (λ = 1.3 Å) neutrons. We indexed the multiple Bragg reflections using the

method described by Cole et al. [39] and implemented in the XOP’s MAMON application

[2]. The neutron energy was selected in such a way that this multiple reflection effect was

minimized. By looking at Fig. 5.5 one can compare the amount of multiple reflections

present at 100 meV (left) and 48 meV (right) as a function of the angle Φ drawn in Fig.

5.6 and which represents rotation around the diffraction vector. During the experiment

the multiple reflections were monitored and reduced by rotating the azimuthal angle Φ of

the crystal. We measured the trasmitted beam intensity T , as a function of the crystal

rocking angle Θ, and for different values of Φ. The most suitable Φ angle was then chosen

by maximising T . It was verified that for a such value of Φ the reflected intensity was

also maximised. We used a perfect Ge <220> crystal monochromator and the beam

was collimated to a value of 10’. The sample and geometry were the same as in the

previous experiment on IN1. We measured the reflectivity of the <220> Bragg planes in

transmission geometry and the Bragg angle was θB = 30.6o. The angular dependence of

both the reflected and transmitted beams were recorded at 77K, 115.5K, 187K, 233K

and 289K.

We fitted R + T by using Eq. (2.25) in order to retrieve µ, then we fitted R with a

Lorentzian Rlor plus a linear background. The angular dependence of R (after removing

the background) and T are plotted in Fig. 5.7. The fitting results are also reported: the

dashed line is e−µd/ sinφ; the solid lines are Rlor and (e−µd/ sinφ − Rlor). The fitted µ is

reported in Table 2. The error on µfit is less than 1% i.e. smaller than the difference with

the values µcalc calculated by using Eqs. (2.47) and (2.49). We used µfit for retrieving the

peak reflectivity and this was compared to the peak of Rlor. In conclusion the measured

peak reflectivity is ∼ 20% smaller than expected, and the observed gain at 77K is 12%,

instead of the calculated 17%. By using also in this case, as shown in Table 1, the multi-

phonon cross-section as calculated in the incoherent approximation, one finds a theoretical

increase of the peak reflectivity of approximately 3%, which is much smaller than the value

given using Freund’s model and also smaller than wht we measured. This confirms that

the incoherent approximation cannot be used at neutron energy of 48 meV.

An attempt to fit R, after convolution with the shape of the incident beam, did not

succeed. This may be due to the unknown real shape of the incident beam, as well as to the

non ideality of the crystal. This could also be the reason for the lower measured reflectivity.

However, the test at 48 meV was evidently less affected by parasitic reflections: the values

of absorption and reflectivity in Table 2 have approximately the same dependence on T

as those calculated.
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Some concluding remarks have to be made about these experiments at low temperature:

1) The measured gain in reflectivity is always smaller than expected and the agreement

with calculations is worse at higher energy.

2) Better modelling, including parasitic reflections, is necessary.

4) At the same time new experiments should be done with more accuracy: the effect of

multiple reflections can be investigated experimentally by recording Θ scans with auto-

matic variation of Φ.

3) Other materials like germanium might show a good reflectivity gain at low temperature

and it could be worthwhile measure them as well.

Figure 5.4: Mosaic copper Cu-A: peak neutron reflectivity as a function of temperature

in Laue geometry. The <220> reflection was measured in symmetric geometry and the

<331> with an asymmetry angle of α = 13.3 o. The + symbols are the measured val-

ues, multiplied by a scale factor. The dashed line is the theoretical reflectivity (see Eq.

(2.21)) with the absorption coefficient µ given by Eq. (2.47) and with parasitic reflections

neglected.
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Figure 5.5: Multiple reflection as a function of the azimuthal crystal angle Φ for Cu <220>

at 100 meV (left) and 48 meV (right).

Figure 5.6: Minimisation of multiple reflections by rotation of the Φ angle in Laue sym-

metric geometry.
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Figure 5.7: Copper Cu-A at 48 meV, <220> reflection in Laue geometry. Angular de-

pendence of the normalised transmitted and reflected beams for different values of tem-

perature. The dotted lines are the measured T and R. The dashed line is the fit of

R + T = e−µd/ sinφ from which we obtained µ. The solid lines are the fit: a lorentzian

Rlor for R and (e−µd/ sinφ − Rlor) for T . The dashed-dotted line in the last figure is the

theoretical reflectivity for a mosaicity of 3’ (FWHM).

Table 2. Neutron absorption and peak reflectivity for the Cu-A sample at 48 meV. The

reflection used is the <220> in symmetric Laue geometry. Freund’s [62] formulas have

been used for calculating µcalc.

Temperature µcalc µfit Rpeak−calc Rpeak−meas
Kelvin [cm−1] [cm−1]

77 0.307 0.2735 0.388 0.317

115.5 0.3275 0.306 0.376 0.302

187.3 0.368 0.345 0.363 0.289

232.8 0.3935 0.366 0.356 0.279

288.9 0.424 0.396 0.346 0.271
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5.4 X-ray reflectivity and topographic study

The good performance of artificial mosaic copper for monochromatising neutron beams is

well established. In spite of this, the production process of these crystals (growth, cutting

and pressing) can lead to the formation of inhomogeneities or grains which are witnessed

by the impossibility to fit the rocking curves with the ideal symmetric mosaic distribution

[12]. The possible presence of inhomogeneities has the effect of decreasing the reflectivity

of these samples. This is generally true for other kinds of mosaic crystals, although the

production technique has improved a lot in recent years, for example in the case of Heusler

polarizing crystals [90]. In this thesis we report an x-ray study on two copper samples

produced at the ILL monochromator laboratory from which non-ideality appears evident:

however, this behaviour is not to be considered common to all the samples produced

with the same technique [91]. As mentioned in section 2.4, the reflectivity of a mosaic

crystal is also affected by the finite size of the small perfect mosaic blocks of which it

is composed. The purpose of this x-ray study is to show the presence of both kinds of

defects (inhomogeneity and primary extinction) and analyse the crystal homogeneity with

an optimal spatial resolution. Due to the lower intensity and higher divergence of neutron

sources, these types of characterisation could be performed using neutrons, but with much

more effort than needed at a synchrotron source. The reflectivity curves and diffraction

topographs were recorded at the ESRF beamline ID15A, described in section 5.2.

We will see that the agreement with the mosaic crystal model described in section 2.4

is very approximate. First of all the crystals do not show an ideal mosaic distribution

W (θ − θB) with Gaussian or Lorentzian shape, but always a combination of the two

(pseudo-Voigt function). Almost all the rocking curves have an asymmetric shape and a

combination of pseudo-Voigt functions is needed in order to fit them. The asymmetric

mosaic distribution means that grains are present along the beam path in the crystal.

Moreover, the mosaic parameters mosaicity η and scattering factor Q, as obtained from

the fit for the same sample, depend on the photon energy, the set of Bragg planes and

position in the crystal. In this sense, we will speak of ”crystal inhomogeneity” or ”non-

ideality”. We recall that the Q factor is not really related to the mosaic distribution W ,

but it determines the secondary extinction coefficient σ = Q × W (θ = θB). According to

Zachariasen [37], a reduced Q′, as obtained from the fit, means that primary extinction is

present in the small perfect crystal blocks forming the crystal, thus decreasing secondary

extinction and reflectivity. The correction toQ is a function of the ratio between crystallite

size and primary extinction depth. In our experiments we always find corrected values

for Q′ which do not give a constant value t0 for the crystallite size of a given sample, but

t0 changes with the energy, Bragg indices and position. Therefore we find different values

for the crystallite size, when measuring rocking curves at different energies, Bragg indices

or positions, due to the fact that we look at different directions and volumes in the bulk
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crystal. As a matter of fact, we can simply look at the correction factor needed to fit Q

as further proof of the crystal non-ideality and inhomogeneity.

This study was carried out on the samples Cu-D and Cu-E described in Table A. The

diffraction profiles, and the corresponding fits, are plotted in Figs. 5.8 and 5.10. The

mosaic distribution W (θ − θB) resulting from the fit was a pseudo-Voigt function with

a Lorentzian (60%) and Gaussian (40%) having the same FWHM η. For both samples,

and for each of the diffraction profiles, the fit could only be performed for negative or

positive angles (with respect to the Bragg angle) because of the asymmetric shape. This

asymmetry could be due to the presence of grains. The fit gives a mosaicity of η = 0.13o

for the < 111 > reflection and an average correction for Q of ∼ 0.6 for the Cu-D sample.

On average we have η = 0.22o and a correction of Q of ∼ 0.9 for the Cu-E sample. For

both samples, but even more for Cu-D, the fitted value of η changed with the measured

reflection. Since η is the intrinsic mosaicity it should not depend on the < hkl > indices.

The reason for the different observed values is that we sample different scattering volumes

for each < hkl >. The mosaicity, expecially for Cu-D, then changes by several arcmin

in different volume elements of the same crystal. This is clearly shown by the diffraction

profile of the < 222 > reflection in Fig. 5.8 (right): the fit was performed assuming that

the mosaic distribution was a combination of the pseudo-Voigt function mentioned above,

with η = 0.07o, plus, for θ ≤ θB, a Gaussian shifted by 0.05o and with ηleft = 0.25o. The

fact that this mosaic distribution could not be used to fit the < 111 > reflectivity of the

same sample means that the diffracting volumes seen by the beam for the two reflections

are different, because of the different incidence angles.

The surface and contour plots in Figs. 5.9 and 5.11 represent reflectivity as a function of

angle and Y coordinate along the crystal length as shown in Fig. 5.1, so they can give an

idea of the crystal homogeneity along this direction. The spatial resolution of these plots

corresponds to the beam footprint on the crystal, which, in the case of Cu-D < 111 >,

was 0.8 mm (incident beam 20 µm wide). The footprint was 4 mm for the < 111 >

and 1.3 mm for the < 333 > in the case of Cu-E (incident beam 100 µm wide). The

inhomogeneities observed in these crystals most probably are not due to surface defects,

because the samples were polished before the experiments.

5.4.1 Measured and simulated topographs

In this section we try to clarify the interpretation of the measured x-ray topographs. By

looking at Fig. 5.3 one realizes that their shape and intensity can be explained by using

geometrical arguments and also by considering the parameters governing extinction in the

crystal: the absorption and secondary extinction coefficients as reported in Table 3. How-

ever this task is easier if we compare the experimental topographs with those simulated
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with the MOSAIC program.

The experimental topographs of the two samples, as a function of the Bragg indices and

angles of incidence, are shown in Figs. 5.12 to 5.17. A beam width of 100 µm was used in

all cases, except for Fig. 5.13 where the slit width was reduced to 20 µm. A qualitative

comparison between the two samples shows that for Cu-D the images are thinner than for

Cu-E: this is due to the smaller mosaicity (i.e. smaller extinction length). The images of

Cu-D look homogeneous, except for the presence in some of them of a double structure.

This means that there are regions which are traversed by the beam and contribute to

diffraction but which suffer the presence of macroscopic misorientations or grains. The

misoriented zones are represented by the ”black” regions of the topographs which occur

between two zones where the intensity is different from zero. This is more evident in

Fig. 5.13 because the slit was thinner and the image is ”cleaner”, although there is

less intensity. Concerning Cu-E, the type of inhomogeneity looks more ”granular” and

in the case of the < 333 > reflection in Fig. 5.17 we have again a double structure

which indicates the presence of regions which are not diffracting. The different type of

inhomogeneity observed in the two crystals is related to the different mosaicity.

The theoretical absorption and extinction lengths for a sample having η = 0.1o are re-

ported in Table 3: it is useful to recall that they represent respectively the average path-

lengths traveled by the incident beam, in the forward direction, before being absorbed

or diffracted. The secondary extinction length for other values of mosaicity can easily be

calculated by recalling that lext = σ−1, with σ = Q × W (θ = θB) (see section 2.4), then

the secondary extinction length is proportional to mosaicity lext ∝ η. These values are

not directly used in the simulations, but they are valid in a statistical sense. However, in

the simulations the total path traveled by each photon is used for calculating the weight

of that photon due to absorption:

weight = e−path×µ (5.1)

Therefore the true absorption length is related to µ, which is an input parameter for the

simulations. The simulated topographs shown in Figs. 5.18, 5.20 and 5.21 concern the

diffracted beam at the angular position corresponding to the exact Bragg angle. They are

the images of the diffracted beam at a distance of 30 cm from the crystal as schematically

shown in Fig. 5.3. The incident beam had a wavelength spread similar to that of our

experiment and a divergence of 20 µrad. The x-axis in the topographs is the Z coordinate

along the scattering direction, in the plane of image, as reported in Fig. 5.3. The images

represent all scattered photons and do not take into account absorption: each point is a

photon and the weight due to absorption is not considered.



Experimental - Copper 99

The easiest way to compare simulations to experiment is computing the topograph profiles,

as schematically drawn in Fig. 5.3. In the case of the simulations, we will call these profiles

”histograms”. If we simply make histograms of photons without using the weight in Eq.

(5.1), we obtain the h(Z) histograms reported for example in the left column in Fig. 5.19.

We cannot compare these to experiment, because of the high absorption. The simulated

weighted histograms hweighted(Z), reported in the column on the right, are calculated by

assigning a weight or probability to each diffracted photon equal to the expression in Eq.

(5.1). Therefore hweighted(Z) is the analog of the experimental profile.

First we can check the effect of the beam size on the histograms in order to say how this

affects the results. The only difference between Fig. 5.20 and the first row in Fig. 5.18 is

the beam size: 1 µm in the first case and 100 µm in the second. The comparison shows

that the profiles do not change with changing the incident beam size. We can then say

that the beam penetration effect is larger than the beam size effect. The topographs of

sample Cu-E in Figs. 5.15, 5.16 and 5.17 can be compared to the simulated images in Fig.

5.21, obtained for η = 0.21o. The result, reported in Fig. 5.22, shows that the agreement

between simulation and experiment is excellent for the < 111 > and < 222 > reflections

and less good for the < 333 >, because of noise on the experimental image.

By assuming an exponential decay, we can write an hypothetical shape for the histograms

h and hweighted:

h ∝ e−σl (5.2)

hweighted ∝ e−(µ+σ)l (5.3)

where µ and σ are the absorption and secondary extinction coefficients, respectively,

and l is the average length traveled in the forward direction by photons arriving at the

detector. In practice we assume that the histogram behaviour is simply dictated by the

attenuation law in the bulk crystal. A more precise estimation for the decay should be

made by recalling that the transmitted intensity T across the crystal depth is given by

Eq. (2.24). According to this equation, the transmitted intensity across the crystal in

Bragg symmetric geometry and with µ = 0, for a pathlength equal to l, should be:

T (l) =
1

1 + σl
(5.4)

We will assume that the profile of the topographic images would be proportional to T (l)

in the case of zero absorption:
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h(l) ∝ 1

1 + σl
(5.5)

By using a simple geometrical consideration which neglects the effect on the beam path

due to multiple scattering, we can substitute in the previous equations: l = Z/ sin 2θB

with the Z axis drawn in Fig. 5.3 as before. We have verified that the non-weighted

histograms are well described by Eq. (5.5): the fit results are the dotted lines in Fig.

5.19 and the fitted values of lext, reported in the figure caption, are of the same order of

magnitude as those in Table 3.

For the hweighted histograms, instead, it is clear that the extinction is mostly due to

absorption, and the Z range over which they differ from zero should be approximately

equal to 1/µ sin(2θB), i.e. a fraction a of mm. This behaviour, i.e. the predominance

of absorption on secondary extinction, is confirmed by the results reported in Fig. 5.22:

the profiles of the experimental images for Cu-E, at the top of the reflectivity curve, are

reported together with the simulation results. The agreement is very good: in spite of the

presence of grains or inhomogeneities (confirmed by the shape of the diffraction profiles

and by the images analysed previously in this section) the sample diffracts according to

expectations.

Figure 5.8: Experimental X-ray reflectivity versus (θ − θB) of the copper sample Cu-D

at E = 120 keV (+ symbols). The fit (dotted lines) was performed using Eq. (2.23)

with two free parameters: mosaicity η and the Q factor. The mosaic distribution was

a psudo-Voigt function. LEFT: <111> reflection with θB = 1.4 o. The fit (performed

for (θ − θB) ≥ 0) gave: η = 12
′
, Q = 0.68×Qtheor = 0.0042 cm−1. RIGHT: <222>

reflection with θB = 2.8 o. The fit results are: η = 4
′
, Q = 0.54×Qtheor = 0.0007 cm−1.

For (θ − θB) ≤ 0 the mosaic distribution was the pseudo-Voigt function plus a gaussian

with FWHM equal to η2 = 15
′
.
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Figure 5.9: Cu-D. LEFT: rocking curves at different values of the Y coordinate along the

crystal surface using a beam width of 20 µm. RIGHT: Contour plot of graphic on the left.

Figure 5.10: X-ray reflectivity versus (θ−θB) of the <111>, <222> and <333> reflections

from copper sample Cu-E (+ symbols). The fit parameters were the mosaicity η and the

Q factor. The mosaic distribution was a combination of a Gaussian and a Lorentzian.

The parameters were as follows: η<111> = 16
′
, Q<111> = 0.82×Qtheor = 0.0051 cm−1,

η<222> = 11
′
, Q<222> = 0.95×Qtheor = 0.00123 cm−1 and η<333> = 10

′
, Q<333> = Qtheor =

0.000385 cm−1.
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Figure 5.11: Cu-E. LEFT: rocking curves at different values of the Y coordinate along the

crystal surface using a beam width of 100 µm. RIGHT: Contour plot of graphic on the

left.



Experimental - Copper 103

Figure 5.12: X-ray topographs of Cu-D <111> at E = 120 keV. The angular positions at

which the topographs were recorded are indicated in the plot on the top-left. The Bragg

angle at this energy is 1.4 o and the slit width was 100 µm.

Figure 5.13: Same as Fig. 5.12 but with a beam size of 20 µm.
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Figure 5.14: X-ray topographs of Cu-D <222> at E = 120 keV. The angular positions at

which the topographs were recorded are indicated in the plot on the top-left. The Bragg

angle at this energy is 2.8 o and the slit width was 100 µm.

Figure 5.15: X-ray topographs of Cu-E <111> at E = 120 keV. The angular positions at

which the topographs were recorded are indicated in the plot on the top-left. The Bragg

angle at this energy is 1.4 o and the slit width was 100 µm.
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Figure 5.16: X-ray topographs of Cu-E <222> at E = 120 keV. The angular positions at

which the topographs were recorded are indicated in the plot on the top-left. The Bragg

angle at this energy is 2.8 o and the slit width was 100 µm.

Table 3. High energy X-ray primary extinction, absorption and secondary extinction

lengths as a function of the energy and the reflection indices. The absorption length

was calculated considering both photoelectric absorption and Compton scattering. The

secondary extinction length was calculated for a mosaicity of η = 0.1 o and the Debye

Waller factor was not considered. The values in the second and third columns determine

the spatial range of the topographic images.

Energy Reflection Primary extinction True absorption Secondary extinction

keV length [µm] length [cm] length [cm]

96 <200> 0.56 0.248 0.253

96 <400> 1.86 0.248 1.39

96 <600> 4.17 0.248 4.64

120 <111> 0.455 0.389 0.302

120 <222> 1.41 0.389 1.45

120 <333> 3.15 0.389 4.80

136 <200> 0.561 0.482 0.509

136 <400> 1.87 0.482 2.815

136 <600> 4.18 0.482 9.42
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Figure 5.17: X-ray topographs of Cu-E <333> at E = 120 keV. The angular positions at

which the topographs were recorded are indicated in the plot on the top-left. The Bragg

angle at this energy is 4.3 o and the slit width was 100 µm.
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Figure 5.18: Simulated x-ray topographs of the <111>, <222> and <333> reflections

from copper at E = 120 keV. The incident beam is 100 µm wide and 2 mm high and

has a divergence of 20 µrad. The crystal mosaicity is η = 0.1 o and the image plane is

30 cm from the crystal. Each point corresponds to a diffracted ray but the individual ray

weights due to absorption are not shown. The axes are the coordinates at the image plane

perpendicular to scattering (vertical axis) and parallel (horizontal axis Z). Units are cm.
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Figure 5.19: LEFT COLUMN: histograms of the image in Fig. 5.18. The dotted line is the

fit using Eq. (5.5) and giving l<111>
ext = 0.20 cm, l<222>

ext = 0.41 cm, l<333>
ext = 3.3 cm which

are of the same order of magnitude as the theoretical values in Table 3. RIGHT COLUMN:

histograms of the simulated topograph, weighted using Eq. (5.1). These histograms could

be directly compared with the experimental topographs.
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Figure 5.20: Same as Figs. 5.18 and 5.19, but with a narrower beam: 1 µm.
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Figure 5.21: Same as Fig. 5.19, but with a different mosaicity: η = 0.21 o.
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Figure 5.22: Dotted lines: profiles of the experimental topographs for the <111>, <222>

and <333> reflections of the copper sample Cu-E, recorded at the nominal Bragg angles.

They were calculated from topographs (4), (3) and (10), respectively, in Figs. 5.15, 5.16

and 5.17. The histograms are the results of the simulations, also shown in the second

column of Fig. 5.21.
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5.5 Summary and conclusions

Copper is one of the most used crystal monochromators for neutrons. It has a good

coherent scattering cross-section and the absorption by nuclei is negligible. Moreover

large crystal with good crystalline properties are easily produced. The ILL has its own

facility for producing Cu mosaic crystals and they supplied us with several samples.

In the first part of this Chapter we have compared the real temperature dependent re-

flectivity of copper mosaic crystals with the valued predicted by the theory. We aimed,

with these neutron experiments, at measuring the increase of reflectivity when lowering

the crystal temperature down to the liquid helium or nitrogen temperatures. We have ex-

perimentally observed an increase of diffracted intensity. However it is difficult to exactly

quantify the temperature effect, because of the presence of spurious effects, like parasitic

multiple Bragg reflections. The comparison with the theories, described in Chapter 2, are

not satisfactory. The Freund’s formalism is able to reproduce the experimental data in

the temperature range [100, 300] K for relatively ”low” incident neutron energy. At lower

temperature or in the case of high energy the model fails.

We have characterized copper crystals, made for neutron applications, using synchrotron

radiation. The aim was to obtain accurate diffraction profiles and to study the homo-

geneity of the crystals. X-ray reflectivity and topographs were recorded for two crystals

with different values of mosaicity. The results of the data analysis can be summarised as

follows:

i) the mosaic distribution of both samples is better represented by a pseudo-Voigt func-

tion instead of a simple Lorentzian or Gaussian function. This could suggest that using

by ”default” Gaussian distributions of crystallites in mosaic crystal calculations is not

appropriate, in particular for crystals like copper, in which the mosaicity is artificially

created by deformation and annealing.

ii) The sample Cu-D, with η ∼ 8′, was far from showing an ideal mosaic crystal behaviour

because of two reasons: the presence of strong primary extinction (demonstrated by the

correction coefficient to be made for the Q scattering factor) and presence of large grains

(demonstrated by the asymmetric rocking curves).

iii) The sample Cu-E, with η ∼ 13′, was more homogeneous and presented an almost

symmetrical reflectivity.

iv) X-ray diffraction topography gives in principle valuable information on the crystal

homogeneity: however, although high energy x-ray beams were used (E = 120 keV),

the strong absorption only allowed us to investigate depths of the order of fractions of
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mm, hence the complete bulk crystal, which contributes to the intensity of the diffracted

neutrons, was not accessible. The topographs, recorded using high energy and highly

collimated x-ray beams, do show the lack of homogeneity, of different type for the two

crystals because of the different mosaicity. These details cannot be seen with neutrons,

because of the much larger beam divergence and dimension of the beams. Rocking curves

recorded using micrometric x-ray beams have different shapes in different positions of

the crystal revealing then the sample inhomogeneity. We have also demonstrated that a

quantitative analysis of the topographs can be carried out using our MOSAIC code.
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Chapter 6

Experimental - Germanium and

graphite

6.1 Use and production of germanium assembled crys-

tals

Germanium crystals, like copper and silicon, are available in large quantities at a rela-

tively low price. Moreover germanium (like silicon) has the diamond structure and the

reflections having h + k + l = 4n ± 2, with n an integer, are forbidden. Therefore, it is

a suitable neutron monochromator when second order contamination has to be avoided.

Both germanium and silicon have long coherence lengths, i.e. they are perfect on a long

scale. In order to use them as neutron monochromators, some kind of distortion has to be

introduced to produce integrated intensities similar to those of graphite or copper mosaic

crystals. In principle, the high-temperature plastic deformation of large perfect germa-

nium crystals leads to a microstructural change with a resulting mosaic structure. The

main difficulty is to achieve mosaic crystals with a spatially homogeneous microstructure

starting from a perfect single crystal. It happens that the crystal faces can ”stick” in the

hot-press and then gliding of the crystal planes as a whole is prevented. This is the rea-

son for the presence of substructures in the crystals. These substructures can be observed

using diffraction of hard x-rays (see [92] for the case of copper). When used as neutron

monochromators, because the beams are large and divergent, the presence of substruc-

tures can have two effects: lowering the peak reflectivity and producing a non-uniform

wavelength and intensity distribution of the reflected neutron beam. The resulting ho-

mogeneity of plastic deformed crystals depends critically on the thickness, and this is the

reason why the stacked wafer method is being developed in many neutron laboratories in-

cluding the ILL [93, 94]. The method is as follows: a given number of perfect germanium

115
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wafers, approximately 1 mm thick, are first deformed by bending and reflattening several

times and then glued in a hot press using thin aluminium or tin foils. The bending and

flattening procedure is done in such a way as to achieve the desired mosaic spread. The

same method can be used to assemble crystals which have virtually no mosaicity, but are

simply plastically bent: in this case the wafers are bent only once and glued. Among the

advantages of these monochromators is the possibility to obtain an anisotropic mosaic

spread, which prevents neutron losses in the plane perpendicular to scattering. Finally, a

sputtering method has been developed which replaces the use of tin or aluminium foils for

gluing and which makes alignment of the wafers more precise [95]. In this section x-ray

and neutron tests on two samples will be presented: the first one plastically bent and

the second one flat and mosaic. The neutron experiments were performed at the T13A

diffractometer of the ILL. The beam from the reactor, transported by the beam tube,

was monochromated by a Ge < 311 > monochromator. In this way, since the measure-

ments reported here concern diffraction by the Ge < 311 > planes (in Bragg symmetric

geometry), the recorded diffraction profiles were not influenced by the incident beam di-

vergence. The x-ray data were recorded at the ESRF high energy beamline ID15A and

the experiment set-up was the same as used for copper, already described in section 5.2.

As shown in Fig. 6.1, because of the extended incident beam, the diffraction profiles are

still the convolution of the intrinsic profiles with the beam size. This introduces some

uncertainties when discussing the reflectivity of the bent sample. The error on the ex-

perimental points representing the reflectivity as a function of the crystal angle was of

the order of 2% for the neutron data and smaller for the x-ray. The integrated intensities

diffracted by these two kinds of crystals are comparable: while the flat mosaic has the

same applications as the mosaic copper, the bent crystal is of course more suitable when

focusing is needed.

6.2 Germanium assembled bent crystal

Neutron experiment. The neutron reflectivity of the < 311 > symmetric reflection from

the sample Ge-A with λ = 2 Å (θB = 36o) and λ = 1.75 Å (θB = 31o), is reported in Fig.

6.2. In order to know how much the diffraction profiles suffer from convolution with the

beam size we have to calculate the Bragg angle spread ∆θ seen by the incoming beam,

because of bending and finite beam size, as schematically shown in Fig. 6.1. The beam

size was 1 mm, so ∆θ ≤ 0.02o. This value of ∆θ is 10 times smaller than the width of the

measured diffraction profile, so we will neglect, to a first approximation, the effect of the

beam size on the reflectivity. The bending of the Bragg planes and the mosaicity of this

sample were measured at the hard X-ray diffractometer at the ILL [89]. We found that

R = 5.7 m and the mosaicity of the single wafers was practically negligible. In spite of this,
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Figure 6.1: The ideal reflectivity of a bent crystal must be convoluted with the effect of ∆θ

due to the beam size.

we found that the diffraction profile could only be fitted if we introduce some mosaicity

in the model. For example, at λ = 2 Å, the peak reflectivity is ∼ 60%. If the crystal were

perfectly bent, according to the lamellar model which predicts the reflectivity of a bent

perfect crystal, it would have a peak reflectivity of 98%. The lower peak reflectivity is

explained by the presence of a mosaic distribution of the Bragg planes, which can be due

to the cutting of the wafers and to the gluing. The fitting procedure was performed using

Eq. (2.41) for the reflectivity predicted by the layer coupling model and letting free three

parameters: mosaicity, equivalent thickness d and attenuation coefficient. As for the flat

crystals (copper in the previous Chapter and HOPG in the next section), a more rigorous

fit would require us to also let the Q factor free. We recall that, according to Zachariasen

[37], a decreased Q, with respect to the theoretical value, accounts for primary extinction

in the small perfect crystallites and has the effect of lowering the peak reflectivity without

changing the shape of the diffraction profile. In other words, correcting Q is essential

when diffraction is governed by secondary extinction due to mosaicity, and we want to

correct for primary extinction. In our case the peak reflectivity is well fitted without

correcting the Q parameter. Actually, this is true at λ = 1.75 Å, but at λ = 2 Å, the

fitted peak reflectivity is lower. In order to reproduce it better, one should introduce a

lower value of mosaicity, but then there would be a discrepancy between the fit and the

tails of the measured profile. However, the small value of mosaicity found by fitting could

also originate from the convolution with the beam shape discussed above, and not be

exactly due to the crystal mosaicity.

There is a discrepancy between the real crystal thickness d = 10 mm and the fitted reduced
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thickness d = 7 mm. This explanation is not straightforward. One might simply say that

it is the thickness of the crystal volume seen by the beam, or the thickness corresponding

to that crystal part which has not been damaged in the assembling process. Since the

total width of the diffraction profile is determined by the thickness and the bending radius

R, we cannot leave d out of consideration in the fitting.

The need to fit µ comes from the simple consideration that the diffraction profile of bent

crystals is asymmetric because of attenuation: for each different incidence angle, the beam

will fulfill the condition for Bragg reflection at a different depth and the Bragg diffracted

beam intensity will decrease according to the value of µ and the path in the crystal. The

slope of the diffraction profile on the left side of the peak is thus very precisely determined

by the value of the attenuation coefficient. For the bent sample Ge-A, the fitted absorption

coefficient is µfit = 1 cm−1 at 2 Å and µfit = 0.75 cm−1 at 1.75 Å, whereas the theoretical

value is µtheor ∼ 0.14 cm−1 in both cases. The diffraction profiles, for a crystal with the

theoretical attenuation, are shown as dashed lines. The reason for the observed increase

of µ is not clear. In spite of the non-ideal behaviour, this sample has a very good peak

and integrated reflectivity and can be seen as a good candidate for being used as focusing

monochromator.

X-ray experiment. The X-ray experiments on this crystal were performed at a photon

energy of 120 keV, in Bragg symmetric geometry. The beam footprint on the crystal for

the < 311 > reflection was 3 mm. The x-ray rocking curve of the bent Ge is shown in

Fig. 6.3. As for the neutron case, the peak reflectivity (18%) is lower than that predicted

by the lamellar theory for a similar bent perfect crystal (31%). Therefore the rocking

curve could only be reproduced by using the layer coupling model, which is valid for

mosaic bent crystals, and the fitted mosaicity was very small: η = 1.4′. We also fitted

absorption because the experimental FWHM was narrower than the theoretical value and,

as explained above, this is due to absorption. The result was µ = 2.2 cm−1, whereas the

theoretical value is µtheor = 1.8 cm−1. The incident beam size was 100 µm, the footprint

on the crystal was F = 3.3 mm and the angular spread seen by the incoming beam

because of its finite size was ∆θ ∼ tan−1(F/R) = 0.03o. The resulting fit does not then

say that there is some mosaicity but just that, in order to fit the experimental data to

theory, one has to convolute the reflectivity of the ideal bent perfect crystal with the

shape of the incident beam. When doing this, one realizes that the convoluted shape of

the reflectivity is wider than that measured. We will then assume that the fit of the data

(without convolution) with the model for the perfect mosaic crystal is more suitable.

Some considerations of the homogeneity of the crystal can be obtained from the plot of the

rocking curves at different positions Y along the crystal shown in Fig. 6.4. The contour

plot shows that there is an approximately linear variation of the angular position of the

Bragg peak corresponding to the bending radius R = 5.7 m. The width of the rocking
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curve along Y is constant, but the peak reflectivity decreases with decreasing Y : this is

probably the effect of a smaller diffracting volume due to the limited crystal length (6

cm).

As in case of copper, the topographs shown in Fig. 6.5 do not show many details because

of high absorption. However some structures are evident in the images labelled (1) and

(2). The histogram obtained from the simulated topograph at the nominal Bragg angle

in Fig. 6.6 is in very good agreement with the experimental profile. It is interesting to

note that even though the crystal is bent, the profile is symmetric because the beam is

extended.

Figure 6.2: Experimental neutron reflectivity versus (θ−θB) (+ symbol) of the bent crystal

Ge-A at 2 Å (left) and 1.75 Å (right). The layer coupling model was used for the fit with

three free parameters: mosaicity, equivalent thickness and absorption coefficient. The

equivalent thickness used for the fit (solid line) is 7 mm. The other parameters are:

η
2Å

= 1.8
′
, η

1.75Å
= 1

′
, µ

fit, 2Å
= 1 cm−1 and µ

fit, 1.75Å
= 0.75 cm−1. The actual crystal

thickness was of 10 mm and the calculated absorption coefficients are µ
theor, 2Å

= 0.145

cm−1 and µ
theor, 1.75Å

= 0.14 cm−1. The dashed lines are the calculated diffraction profiles

with the nominal absorption coefficient; the dotted lines with the nominal absorption and

thickness and the dot-dashed lines are calculated with the nominal thickness and fitted

absorption coefficient.
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Figure 6.3: X-ray reflectivity versus (θ − θB) of the <311> reflection from the assembled

bent crystal Ge-A. The photon energy was 120 keV. The radius of curvature is R = 5.7 m.

The dotted line is the reflectivity according to the layer coupling model with the parameters:

η = 1.4
′
= 0.02 o and µ = 2.2 cm−1 (whereas µtheor = 1.8 cm−1).

Figure 6.4: LEFT: rocking curves along the crystal surface for the same case as Fig. 6.3.

RIGHT: contour of the plot on the left. The bending of the Bragg planes to R = 5.7 m is

proved by the shift of the peak along Y.
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Figure 6.5: X-ray topographs of the assembled bent <311> Ge-A at E = 120 keV. The

angular positions at which the topographs were recorded are indicated as squares in the

plot in the first row. The Bragg angle at this energy is 1.7 o and the slit width was 100

µm.
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Figure 6.6: TOP: simulated x-ray topograph of the <311> reflection from bent germanium

at E = 120 keV at the exact Bragg angle. The incident beam is 100 µm wide and 2 mm

high and has a divergence of 20 µrad. The crystal radius of curvature is R = 5.7 m,

the mosaicity is η = 0.02 o and the image plane is 30 cm from the crystal. Every point

corresponds to a diffracted photon; the image is not weighted with absorption. The axes are

the coordinates at the image plane perpendicular to scattering (vertical axis) and parallel

(horizontal axis Z). Units are cm. BOTTOM LEFT: histogram of the image. BOTTOM

RIGHT: the solid line is the histogram of the simulated topograph, weighted using Eq. 5.1

with the absorption coefficient equal to the value obtained by the fit of the rocking curve.

The dotted line is the profile of the experimental image n o (6) in Fig. 6.5.
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6.3 Germanium assembled flat crystal

Neutron experiment. The flat sample described in this section was obtained by stacking 10

germanium wafers, 1 mm thick, which were previously bent and reflattened to achieve the

desired mosaicity. Thus, as mentioned in the introduction to the Chapter, the resulting

mosaicity should be anisotropic, with an average width η larger in the direction of defor-

mation. The two neutron rocking curves shown in Fig. 6.7 were measured by rotating the

azimuthal angle Φ of the crystal by 90o. Therefore they demonstrate the different mosaic-

ity when using two perpendicular scattering planes. The anisotropic mosaic distribution

can be seen from the different widths of the rocking curves: the theoretical diffraction

profiles shown in the plots were obtained using η ∼ 4.2
′
for the reflectivity in the plane

corresponding to the deformation process, and η ∼ 2.1
′
for the perpendicular direction.

In order to properly fit the reduced peak reflectivity, we used Q = 0.3×Qtheor = 0.00093

cm−1 and Q = 0.15 × Qtheor = 0.000465 cm−1 respectively. The two different Q factors

obtained from the fit indicate that the mosaic model we use is very approximate for this

crystal. In theory, a smaller Q means a larger crystallite size, but in the case of the

machined crystal this is just a measure of the imperfection. The surface plot in Fig. 6.8

represents reflectivity as a function of angle and Y coordinate along the crystal length.

It does not show many details because of little spatial resolution of the beam (few mm).

However, the contour plot shows a displacement of the peak along Y , as if there was a

residual bending of the Bragg planes in the bulk crystal.

X-ray experiment. The x-ray rocking curves, measured at photon energies of 120 and

90 keV for the < 311 > and < 933 >, are reported in Fig. 6.9. All the plots show the

presence of grains, thus the fit was done by using a mosaic distribution W (θ−θB) given by

the sum of two pseudo-Voigt functions with different FWHMs η and η2, shifted of ∆ one

with respect to the other. These parameters are reported in the same figure. The sample

has an average mosaicity of ∼ 5′, similar to that found with neutrons. The presence of

inhomogeneities is also proved by the diffraction profiles recorded for the < 311 > at

90 and 120 keV along the crystal surface as shown in Fig. 6.10: the peak reflectivity

decreases by more than 50% over 10 mm. Furthermore, the surface plot at 90 keV shows

some ripples. They are probably due to the fact that the wafers do not have a perfect

flat shape because of the machining process. Contrary to the neutron data in Fig. 6.8, in

the x-ray case in Fig. 6.10 the position of the Bragg peak does not change with Y , so a

possible residual bending is present in the crystal bulk but not at the surface.

Different topographs, for several incidence angles, are shown in Figs. 6.11 for E = 120 keV

and 6.12 for 90 keV. For this crystal we observe multiple structures, which are different

from those seen for copper and for the bent Ge sample. An interesting question is whether

the illuminated zones correspond to different wafers or if they are a proof of the ripples
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that appear also in the surface plot already discussed. We can assess this by comparing the

simulation results to for example the image (5) in Fig. 6.12, corresponding to (θ− θB) =

0.08o, and where the structures are more visible. The MOSAIC program keeps track of

the maximum depth reached by the simulated photon trajectories in the crystal. The

simulation shows that rays having reached a maximum penetration depth of 10 mm,

i.e. the total crystal depth, can reach the image position. Nevertheless, by weighting the

probability of observation of these trajectories with Eq. (5.1), we find that, because of high

attenuation, only those rays having a maximum penetration depth of approximately 0.4

mm have a non negligible probability of being observed at the detector. Then, according

to the simulation result, the structures do not correspond to the wafer separation, but

most probably to ripples in the first crystal wafer.

Finally, a comment on the simulated topographs in Fig. 6.13 and on the comparison with

the experimental profiles in Fig. 6.14: the agreement is worse than that for the bent

germanium because here we used the theoretical attenuation coefficient. In the case of

the bent crystal we used the fitted value of µ and the simulated profiles were in very good

agreement with the experiment.

Figure 6.7: Experimental neutron reflectivity versus (θ − θB) (+ symbol) of the flat crys-

tal Ge-B at 1.64 Å. LEFT: the scattering plane corresponds to the direction in which

the wafers were machined. RIGHT: scattering plane perpendicular to the direction in

which the wafers were machined. For the calculated reflectivity (solid line) we used

Q = 0.3×Qtheor = 0.00093 cm−1 and η = 4.2
′
(LEFT) and Q = 0.15×Qtheor = 0.000465

cm−1 and η = 2.1
′
(RIGHT).
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Figure 6.8: Same as plot on the left in Fig. 6.7. LEFT: rocking curve recorded along the

crystal surface. RIGHT: contour of the plot on the left.
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Figure 6.9: X-ray reflectivity versus (θ − θB) of the assembled flat crystal Ge-B (+ sym-

bols). TOP: <311> reflection at 90 and 120 keV. BOTTOM LEFT: <933> reflection

at 90 keV. BOTTOM RIGHT: parameters used for calculating the theoretical reflectivity

(dotted lines) using a mosaicity distribution W (θ − θB) with two separate peaks. The

free parameters were the two FWHMs η and η2 of W , the peak separation ∆ and the Q

scattering factor.
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Figure 6.10: LEFT: rocking curves recorded as a function of Y along the crystal surface

for the case already shown in Fig. 6.9. The structures appearing on the tails, more visible

for the upper surface plot, are due to real imperfections and not to noise or erroneous

normalisation. RIGHT: contours of the plots on the left.
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Figure 6.11: X-ray topographs of the assembled flat crystal Ge-B at E = 120 keV for the

<311> Bragg planes. The angular positions at which the topographs were recorded are

indicated as squares in the plot in the first row. The Bragg angle at this energy is 1.7 o

and the slit width was 100 µm.
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Figure 6.12: X-ray topographs of the assembled flat crystal Ge-B at E = 90 keV for the

<311> Bragg planes. The angular positions at which the topographs were recorded are

indicated as squares in the plot in the first row. The Bragg angle at this energy is 2.3 o

and the slit width was 100 µm.
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Figure 6.13: Simulations for the <311> reflection from flat germanium at E = 120 keV

(TOP) and E = 90 keV (BOTTOM). LEFT: simulated x-ray topograph at the nominal

Bragg angle. The incident beam is 100 µm wide and 2 mm high and has a divergence of

20 µrad. The crystal mosaicity is η = 0.12 o (TOP) and η = 0.05 o (BOTTOM) and the

image plane is 30 cm from the crystal. Every point corresponds to a diffracted photon; the

image is not weighted with absorption. The axes are the coordinates at the image plane

perpendicular to scattering (vertical axis) and parallel (horizontal axis Z). Units are cm.

RIGHT: histogram of the image on the left.
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Figure 6.14: Comparison between the experimental topograph profiles (dotted lines) and

the histograms of the simulated topographs reported in Fig. 6.13, weighted by using Eq.

5.1 and the absorption coefficient given by the theory. TOP: profile of the experimental

image n o (3) in Fig. 6.11. BOTTOM: profile of the experimental image n o (13) in Fig.

6.12.
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6.4 X-ray reflectivity of highly oriented pyrolitic graphite

Pyrolytic graphite is generally considered to be a nearly ideal imperfect crystal. Exten-

sive studies of its diffracting properties have been made in the past [46, 96] but, to our

knowledge, a complete analysis of its reflectivity as a function of energy and index of re-

flection does not exist. The reflection and transmission profiles in Fig. 6.15 and 6.16 were

measured using synchrotron radiation at the BM5 beamline at ESRF. The divergence of

the beam in the scattering plane was negligible and its dimensions were fixed at 0.1 mm

× 0.1 mm. The curves were measured using a Si diode detector. We used a sample of

thickness d = 0.5 mm produced by Optigraph (Russia) and measured the <002> and

<004> reflections in Bragg symmetric geometry at 12, 22, 32 and 42 keV (λ=1.03, 0.56,

0.39 and 0.295 Å). We tested the sample homogeneity by recording diffraction topographs

at all reflections and energies mentioned above. First the attenuation coefficient µ was

obtained by fitting the tails of T , then these values were used to fit the rocking and trans-

mission curves simultaneously with Eqs. (2.23) and (2.24). The fitting parameters were

mosaicity η and the scattering factor Q and a gaussian function was used for the mosaic

distribution W (θ − θB). The theoretical and the fit parameters are shown in Table 1.

The fit performed on the tails of T is good (thus giving reliable values for the attenuation

coefficient) except for the case of the <002> reflection at E ≥ 22 keV: one possible reason

for this inaccurate fit may be that the Bragg angles are quite small (see Table 1) and the

presence of possible defects or inhomogeneities on the surface affects the beam. The fit of

the rocking curves, on the other hand, is very accurate for the <004> reflection but not

for the <002>: the fitted peak reflectivity of the principal reflection is always smaller than

the measured one. The mosaicity, as obtained from the fit, was equal to η = 0.32o±0.01o.

The rocking curves that we measured confirm the almost ideal behaviour of this sample,

especially when compared to the copper and germanium crystals already discussed. The

rocking curves are highly symmetric and we used a purely Gaussian function for fitting

the mosaic distribution for all values of energy and Bragg indices. The correction factor

for the Q coefficient is, on average, equal to ∼ 0.7. By using Eq. (4.46a) of Zachariasen

[37] and using the corrected Q, as obtained by the fit of the < 002 > reflection at 12 keV,

we can extrapolate the value of the crystallite size t ∼ 1.2 µm. The primary extinction

depths, instead, are text = 1.1 and 3.7 µm respectively for the < 002 > and < 004 >

reflections.
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Figure 6.15: Graphite sample HOPG-A: normalised transmission and reflectivity as a

function of the X-ray energy for the <002> reflection. The dotted line is the experiment.

The dashed lines superimposed on the T profiles represent the fit of the tails of T to

determine the values of the attenuation coefficient µ. The fitted µ was then used to fit R

and T simultaneously (solid lines) with two free parameters: the Q scattering factor and

mosaicity η. The theoretical and fit parameters are reported in Table 1.

Table 1. Parameters of the pyrolitic graphite sample HOPG-A: Bragg angles, X-ray

attenuation coefficient and Q factor.

Energy Reflection θBragg µcalc µfit Qcalc Qfit

keV degrees cm−1 cm−1 cm−1 cm−1

12 <002> 8.88 2.84 2.31 0.0638 0.0470

12 <004> 18. 2.84 2.31 0.00809 0.00584

22 <002> 4.83 0.73 0.61 0.0211 0.0163

22 <004> 9.69 0.73 0.67 0.00314 0.00227

32 <002> 3.32 0.49 0.29 0.00963 0.0061

32 <004> 6.65 0.49 0.44 0.00156 0.00116

42 <002> 2.53 0.425 0.16 0.005615 0.00265

42 <004> 5.06 0.425 0.32 0.000926 0.0007
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Figure 6.16: Same as Fig. 6.15 for the <004> reflection.
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6.5 Summary and conclusions

In this Chapter we have discussed experiments carried out on three kinds of crystals: as-

sembled bent germanium, flat germanium, and highly oriented pyrolitic graphite. These

crystals were chosen because of their interesting properties when used as neutron monochro-

mators or analysers. Germanium is a semiconductor with the diamond structure. Hence

it is very rigid and it is difficult to obtain crystals with suitable mosaic distributions. For

this reason a new class of germanium crystals obtained assembling thin germanium wafers

is being developed. We studied both flat and bent assembled crystals. Pyrolitic graphite

can be considered as a ”standard” example of mosaic crystal. It is perhaps the best ideal

imperfect crystal available.

This chapter closes a large study aiming at comparing the recorded reflectivity of real

crystals (the two germanium assembled crystal, the copper crystals in the previous Chap-

ter and HOPG): it shows that there exist mosaic crystals, such as HOPG, which diffract

in almost perfect agreement with the theory presented in Chapter 2, and for which the

reflectivity is perfectly fitted by assuming that they have a Gaussian mosaic distribution;

on the other side, assembled crystals are very roughly modelled by the theoretical formu-

las. In the assembled crystals a high degree of inomogeneity can be found when looking

at different parts of the crystal with a micrometric x-ray beam. This effect, also observed

in copper, cannot be seen with neutrons, because of the poorer characteristics (in terms of

size and collimation) of neutron beams. The peak intensity measured experimentally with

neutrons is usually smaller than what is theoretically expected. The neutron reflectivity

is an average over the whole diffracting bulk, and the high degree of inomogeneity at a

microscopic scale, that we measured with x-rays, can be considered as a good argument

to explain this reduction of intensity.

The analysis and fit of the neutron rocking curves of bent germanium tell us that important

parameters, like attenuation, could be altered by the deformation and assembling process

of the crystal, and no longer correspond to the theoretical values. This effect is responsible

for the reduction of the final integrated reflectivity.

The analysis of the flat assembled germanium, on the other hand, shows that the defor-

mation process used for obtaining the desired mosaicity, leads to a final crystal in which

the mosaic distribution is not smooth, but is composed of at least two peaks. The wafers

(both the superficial ones that we investigated with x-rays and the bulk ones, ”seen” by

neutrons) do not return to the flat shape thay had before being machined. All these

problems make the interpretation of the germanium reflectivity more difficult than that

of copper and HOPG.
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Chapter 7

Summary and conclusions

Imperfect crystal monochromators and analysers are used in a large number of neutron

scattering instruments. The diffraction properties of these crystals have a strong influence

on the quality of the neutron beams diffracted by the crystal monochromator or analyser.

Hence, understanding these properties is necessary when choosing the kind of crystal to be

used in an instrument or simply when wanting to describe the instrument performance.

This thesis has looked into the detailed description of mosaic and bent crystals from

several points of view:

1) In Chapter 2 we have given a review of the theories describing the reflectivity of per-

fect, mosaic, bent and gradient crystals and mentioned the approximations needed by the

models. We have shown two possible approaches for calculating, in an approximate way,

the neutron beam attenuation due to thermal diffuse scattering. We have implemented

the analytical formulas for reflectivity, transmissivity and attenuation in computer codes

which will be released to the neutron community. We believe this is an important contri-

bution to the development of neutron optics software tools.

2) An exact description of all the properties (beam intensity, spatial, angular and energy

distributions) of the beam diffracted by a crystal is obtained by using the Monte Carlo

method. In Chapter 3 we have shown how to apply this method to mosaic and bent

crystals. Our codes are original tools and they are able to simulate a large variety of crys-

tals. Moreover, they have been benchmarked against analytically calculated reflectivities

and also measurements, like x-ray topographs. An example of application of the BENT

Monte Carlo code is shown in Chapter 4, where some simulation results for the new Strain

Imager instrument in construction at the ILL are discussed.

3) An experimental study concerning several types of crystals has allowed us to recognize

which crystal properties are close to the theoretical expectations, and which are not.

The knowledge of the detailed x-ray and neutron diffraction by some of these samples
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allows reproducing their reflectivity, for example, both using analytical and numerical

methods, provided that realistic parameters (attenuation, primary extinction and real

mosaic distribution) are used in the calculation. The experimental data discussed in

Chapters 5 and 6 have shown that detailed crystal simulations have to take into account

also parasitic Bragg scattering.

A preliminary conclusion about this thesis is the following: there are differences between

the real and the ideal crystal behaviour; we have investigated some non-ideal aspects and

have been able to describe them, both with simulations and using analytical fitting. More

detailed conclusions require recalling the main results, hence we will summarize them here

trying to keep a global view of the work.

Neutron reflectivity of mosaic copper versus temperature.

The study of the temperature dependent reflectivity of mosaic crystals is an interesting

subject, to assess the advantages of using cooled monochromators and analysers. The

accurate prediction of the reflectivity gain of cooled mosaic crystals is important because

this has to be compared to the high cost of the cryogenic system. We summarize, in

Table 1, the peak reflectivity increase, at low temperature, measured using a copper

crystal, in Laue geometry. The good improvement observed for the asymmetric < 331 >

reflection, suggests that this study is interesting and should be performed also with other

crystals. However, the very partial agreement with the calculation results, indicates that

less approximated models should be used. We observed experimentally how parasitic

reflections can affect data: their effect changes with changing the neutron energy, the

Bragg indices and the crystal azimuthal angle. An improvement of the data presented

in this thesis would be obtained by repeating the experiments, on copper and also other

crystals, and especially improving the data analysis, with corrections for the intensity

added or subtracted by the parasitic reflections. This could be done using the model

discussed in [40].

Table 1. Measured and calculated increase of the neutron reflectivity (with respect to

room temperature) for mosaic copper in Laue geometry.

Reflection T Energy Experiment Freund’s model Approximated

K meV multi-phonon

220 77 48 12% 17% 3%

15 100 18% 24% 13%

15 250 18% 35% 33%

331 15 100 31% 34% 14%

15 250 33% 55% 35%
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Characterisation of HOPG, copper and germanium.

The comparison of the data concerning different crystals as highly oriented pyrolitic

graphite (HOPG), copper and assembled germanium shows how the different techniques

used to produce these crystals strongly influence their reflectivity and homogeneity. In

order to characterise crystals, it is important to use high quality beams, in terms of

monochromaticity, collimation and small size (to access small crystal volumes). Hence, in

this thesis, we present more experiments performed with x-rays than neutrons, because

of the better angular and energy resolution of the photon beams produced by third gen-

eration synchrotrons. The x-ray data we measured using a HOPG sample has shown that

the reflectivity and transmission curves are very well fitted provided that a correction is

introduced accounting for primary extinction (see the example in Fig. 7.1). We used a

purely Gaussian function for fitting the mosaic distribution and did not detect any in-

homogeneity. The fitting parameter η, representing mosaicity, has only slight variations

for different reflections and energy values. This means that the usual model used for

simulating HOPG works well, if the effect of primary extinction is considered.

The situation drastically changes when considering tha x-ray characterisation of mosaic

copper: depending on the sample, the mosaicity, the Bragg angle and the beam position

on the crystal, we obtain different results in terms of homogeneity and primary extinction

effects. The < 222 > reflection (Fig. 7.2), measured with E = 120 keV, has a reflectivity

which is affected by primary extinction and inhomogeneities of the mosaic distribution for

the sample Cu-D, but is very close to the ideal result for the Cu-E sample. The different

behaviour (also witnessed by the topographs shown in Chapter 6 for the two samples) is

most probably due to the different deformation process used to produce the mosaicity.

The presence of defects in mosaic copper crystals has been known for a long time, but

important progress has been done in the growing, cutting and machining technique. It is

an interesting question whether the results of the detailed characterisation described in

this thesis, limited to a few samples, can be used for modeling other crystals produced

in a similar way. We believe that the study of the real crystal structure, even if limited

to few crystals of good quality, helps to conclude if modeling (analytical or numerical) is

close to reality or not. As an example, none of the copper samples that we analysed had

a mosaic distribution W (θ − θB) of Gaussian shape. Since this distribution determines

the peak reflectivity and the total width of the diffraction profile, it is important to use a

realistic distribution W (θ− θB) for the simulations. The use of a simple Gaussian profile

would lead to inaccurate results.

This characterisation is instructive for the case of the crystals made of assembled germa-

nium wafers. Our measurements show the presence of defects and, for the flat crystal,

of residual bending of the glued wafers (Fig. 7.3). The use of this kind of crystals for
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Figure 7.1: Graphite sample HOPG-A: normalised transmission (left) and reflectivity

(right) as a function of (θ − θB) for the <004> reflection. The photon energy is E = 22

keV. The dotted line is the experiment. The dashed line superimposed on the T profiles

represents the fit of the tails of T to determine the values of the attenuation coefficient µ.

The fitted µ was then used to fit R and T simultaneously (the solid lines are the fit results)

with two free parameters: the Q scattering factor and mosaicity η. The theoretical and fit

parameters are reported in Table 1 in Chapter 6.

monochromating neutrons is possible because of the high average mosaicity.

A pictorial view of the different kind of inhomogeneities found for copper and germanium

is given by x-ray diffraction topography (Fig. 7.4). The presence of grains in visible in

both cases, but, in the case of germanium, we observe imperfections that are probably

ripples due to the wafer machining process.

Both neutron and x-ray data (Fig. 7.5) concerning the Ge-A assembled bent crystal show

that a good fit is possible, using the layer coupling model [56], by letting the mosaicity

η and the attenuation coefficient µ as free parameters. However, the µfit parameter is

higher than the theoretical value, especially for the neutron data. This makes the neutron

integrated reflectivity as low as 60% of the theoretical reflectivity. A more accurate fit of

the data would require to study in more detail other effects which have not been considered

here, in particular the presence of parasitic reflections. As an example, for germanium

< 311 > at λ = 2 Å the < 111 > reflection can also be excited.
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Figure 7.2: Experimental x-ray reflectivity versus (θ − θB) for the copper samples Cu-

D (top) and Cu-E (bottom) (+ symbols). The fit (dotted lines) was performed using Eq.

(2.23) with two free parameters: the mosaicity η and the Q factor. The mosaic distribution

was a pseudo-Voigt function. The plot on the top was fitted by adding a Gaussian part to

W (θ − θB), for (θ − θB) ≤ 0.
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Figure 7.3: Flat assembled crystal Ge-B: the contour plots represent the reflectivity as a

function of the rotating angle and Y coordinate along the crystal surface. TOP: neutron

reflectivity. BOTTOM: x-ray reflectivity.
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Figure 7.4: X-ray topographs of Cu-E <222> at E = 120 keV (left) and of the assembled

flat crystal Ge-B at E = 90 keV for the <311> reflection (right). Both topographs were

recorded for θ < θB (approximately 15 % of the peak reflectivity). They are on the same

scale and the image height is ∼ 3.5 mm.
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Figure 7.5: The + symbols are the experimental neutron (top) and x-ray (bottom) reflec-

tivity versus (θ − θB) of the bent crystal Ge-A. The layer coupling model was used for

the fit (Eq. (2.41)) with three free parameters: mosaicity, equivalent thickness and atten-

uation coefficient. TOP: the theoretical attenuation coefficient for Ge is µtheor = 0.145

cm−1. The dashed line is the calculated diffraction profile with the nominal attenuation

coefficient; the dotted line with the nominal µ and thickness; the dot-dashed line is calcu-

lated with the nominal thickness and fitted attenuation (µfit = 1 cm−1); the solid line is

the fit with the thickness as a free parameter. BOTTOM: the dotted line is the reflectivity

according to the layer coupling model with the parameters: η = 1.4
′
= 0.02o and µfit = 2.2

cm−1 (whereas µtheor = 1.8 cm−1).



Summary and conclusions 145

Monte Carlo modelling.

Many of the data presented in the previous sections of these Conclusions have been com-

pared and fitted with theoretical formulas. These formulas allow calculating the reflectiv-

ity and transmission profiles of bent and mosaic crystals. However, the analytical methods

can only partially explain some of the features observed in real crystals. In order to model

and simulate a neutron instrument in detail, more sophisticated simulations must follow

the unavoidable preliminary calculations (which can be graphical or analytical). Our

original contribution to this problem was the development of Monte Carlo codes, which

are described in detail in Chapter 3. This method allows a detailed description of the

particle path in the mosaic and/or bent crystal. An original result, that probably cannot

be obtained with other methods, is the computation of the average number of scattering

events Nmulti undergone by the simulated particles or the average depth < τ > reached

in the crystal. We have shown in Chapter 3 a comparison between these quantities for

mosaic and bent crystals having similar reflection profiles: the values obtained for < τ >

are comparable, but for a mosaic crystal Nmulti can be some orders of magnitude larger.

We recall this result, in the case of the mosaic crystal, in Fig. 7.6.

Figure 7.6: Number of scattering events Nmulti versus the maximum depth τ reached by

reflected particles, for some values of the mosaicity η. These data correspond to the exact

Bragg angle and Bragg symmetric geometry.

In Chapter 4 we have shown how this method can be applied to the simulation of the new

Strain Imager instrument of the ILL, where the crystal module is linked to other elements,

as the equivalent source, the radial oscillating collimator, and the ideal polycrystalline
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sample. This instrument will be based on the use of bent crystal monochromators: we

believe that a decisive improvement of the accuracy of the calculations, in terms of in-

tensity and resolution, would be achieved by describing the crystals in the most realistic

way. The use of mosaic bent germanium (obtained by plastic bending) might not give

the expected increase of intensity with respect to an elastically bent crystal, because of

the imperfections (inhomogeneity or others) introduced by the deformation process. We

have experimentally observed these effects and described them in Chapter 6.

A final successful application of the codes was the comparison between the measured and

simulated data concerning the profiles of the x-ray diffraction topographs. We summarize

these results in Fig. 7.7 for the three kinds of crystals used: mosaic copper, flat and bent

assembled germanium. The very good agreement we found is explained by the fact that,

in the simulations, we used parameters as attenuation coefficient, mosaicity and crystallite

thickness (related to the primary extinction correction), obtained by fitting the rocking

curves. The agreement is worse for the case of the flat germanium crystal because it was

not possible to fit the µ coefficient, and the theoretical value had to be used instead.
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Figure 7.7: Dotted lines: profiles of the experimental x-ray topographs recorded at the

nominal Bragg angles. TOP: <111> reflection of the copper sample Cu-E at 120 keV.

CENTER: <311> reflection of the flat germanium sample at 90 keV. BOTTOM: <311>

reflection of the bent germanium sample at 120 keV. The histograms are the simulation

results.
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The results that we have recalled in these conclusions show that Bragg diffraction by

imperfect crystals can be described successfully by theories and Monte Carlo simulations.

However, depending on the type of crystal, there can be undesired effects. The possible

inhomogeneities of the mosaic distribution reduce the crystal reflectivity and also the

quality of the diffracted beam. Our Monte Carlo codes are able to simulate these imper-

fections: the method can be applied to real crystal, provided that a realistic knowledge

of the type and distribution of the imperfections is known. Another important reason

for the decrease of the crystal reflectivity is primary extinction: also in this case, if the

size of the crystallites is known, the numerical simulation gives precise values of the real

reflectivity. A very well known problem is the decrease of efficiency of imperfect crystals

because of parasitic reflections: the estimation of this effect is possible and its approxi-

mated calculation will probably be implemented in a future version of XOP for neutrons

and of our Monte Carlo codes.

Finally, the possibility to accurately simulate bent crystals has to be recalled: due to

the large penetration lengths of neutrons in crystals, the focusing effect by bent crystals

suffers the presence of aberrations and the usual laws of optics are approximated. Only

with realistic simulations of the beam path in the bulk crystal (i.e., with a full Monte

Carlo simulation), we can describe focusing by non-ideal crystals.

In this thesis we have shown examples of all the effects that contribute to make the

crystal reflectivity different from that predicted by the usual simplified models. We believe

that the informations we collected during the development of this study can help in

understanding real crystals. The calculation tools that we developed already contain these

informations. However, they can surely be improved. Because the sources of imperfections

and defects are many and difficult to predict, the results presented in this thesis and the

release of these codes to the neutron community will hopefully contribute to the design

and simulation of new neutron instruments using crystal analysers and monochromators.
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Conclusions

Dans cette thèse, nous avons étudié de façon détaillée la diffraction par les cristaux im-

parfaits. En particulier, nous nous sommes concentrés sur des cristaux réels présentant

un intérêt pour l’instrumentation neutronique, et qui sont employés comme monochro-

mateurs ou analyseurs. Nous voulions étudier aussi les limites de l’applicabilité des

modèles théoriques couramment utilisés pour décrire la diffraction de Bragg par ces

cristaux. Le travaux sont présentés en deux parties complémentaires. D’abord, une

partie expérimentale, plutôt étendue, visant à étudier la diffraction par nos échantillons,

dans des conditions optimales, afin d’obtenir des données expérimentales comparable aux

résultats théoriques. Pour cela, nous avons mesuré les profils de réflectivité de neutrons,

mais aussi de rayons X et des topographies de rayons X. L’utilisation du rayonnement

de synchrotron nous a permis de mieux évaluer la diffraction à un niveau microscopique,

un genre d’information qui n’est pas disponible en employant des faisceaux de neutrons

conventionnels. Deuxièmement, nous avons développé des programmes Monte Carlo qui

simulent la diffraction par les cristaux imparfaits. Après avoir expliqué dans l’introduction

les motivations pour étudier ces cristaux, et comment ce problème est situé dans le con-

texte général de la modélisation des instruments de neutrons, nous avons passé en revue,

dans le chapitre 2, les théories décrivant la diffraction (et l’absorption) dans les cristaux

parfaits, mosäıques et courbés. Une étape nécessaire était le développement de pro-

grammes de calcul théorique. Ces programmes peuvent être employés pour des calculs

préliminaires de profils de réflectivité. Nous les avons appliqués à l’analyse des données

expérimentales. Cependant, les méthodes analytiques peuvent seulement partiellement

expliquer certains effets observés dans des cristaux réels.

Afin de modéliser et simuler un instrument de neutrons en détail, des simulations plus

sophistiquées doivent suivre les calculs préliminaires (graphiques ou analytiques). Notre

contribution originale à ce problème était le développement des codes de Monte Carlo

décrits dans le chapitre 3. L’originalité est dans la description détaillée de la trajectoire

des particules dans le cristal mosäıque et/ou courbé.

Dans le chapitre 4, nous avons montré comment cette méthode peut être appliquée à la

simulation du nouvel instrument Strain Imager en construction à l’ILL, où la fonction du

cristal est liée à d’autres éléments, par exemple un collimateur focalisant et oscillant et

un échantillon polycristallin. Cet instrument sera basé sur un monochromateur constitué

de cristaux courbés. Une amélioration décisive du calcul de l’intensité et de la résolution

pourrait être effectuée, en décrivant les cristaux de la manière la plus réaliste, en connais-

sant les défauts typiques de ces cristaux. L’utilisation du germanium mosäıque et courbé

(obtenu par déformation plastique) ne pourrait probablement pas donner l’augmentation

prévue de l’intensité par rapport à un cristal courbé élastiquement, en raison des imper-

fections (inhomogénéités ou autres) données par le processus de déformation. Nous avons
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observé ces effets et les avons décrits au chapitre 6. Aux chapitres 5 et 6, nous avons

présenté des travaux expérimentaux détaillés sur des cristaux courbés en germanium, et

des cristaux mosäıques en cuivre, germanium et graphite pyrolitique hautement orienté.

Ceci a prouvé que, seulement dans le cas du graphite pyrolitique, une distribution de

la mosäıque parfaitement gaussienne est acceptable, et les théories usuelles peuvent être

appliquées ainsi. Dans le cas des cristaux en cuivre et germanium, la distribution de la

mosäıque est mieux décrite par une fonction pseudo-Voigt et est en général asymétrique.

Les données expérimentales ont montré plusieurs effets qui sont bien connus mais sont

rarement considérés dans la modélisation. Le premier est la présence de diffractions multi-

ples parasites, difficiles à quantifier dans des cristaux mosäıque. La seconde est l’extinction

primaire qui dépend de la taille finie des blocs parfaits (cristallites) qui composent le cristal

mosäıque. Un troisième effet est la variation de la mosäıcité η en changeant l’énergie ou

les plans de Bragg : la seule explication de cet effet est que les cristaux de germanium et

de cuivre sont inhomogènes. Ces faits contribuent à la diminution de l’efficacité du cristal

monochromateur et doivent être pris en compte pour des calculs réalistes.

Une partie très intéressante est l’étude des cristaux de germanium courbés, obtenus par

assemblage de petites lames déformées plastiquement. La largeur des profils de diffraction

de cristaux courbés dépend du rayon de courbure et de l’épaisseur. L’inclinaison est une

fonction du coefficient d’atténuation µ. Les profils calculés ont été adaptés aux profils

expérimentaux en affinant quelques paramètres comme le coefficient d’atténuation : les

valeurs ainsi déterminées pour µ ont différé des prévisions théoriques. L’atténuation

inopinément élevée du faisceau incident par le cristal de germanium suggérerait d’effectuer

des mesures de basse température afin de déterminer, à partir du changement de cette

inclinaison, combien d’absorption vient de la diffraction par les phonons et combien par

les réflexions parasites.

En conclusion, les travaux analytiques, numériques et expérimentaux que nous avons

menés pour la préparation de cette thèse nous ont fait comprendre les propriétés de

diffraction de plusieurs types de cristaux imparfaits. Le développement des codes qui

reproduisent les formules théoriques est utile, mais la description détaillée finale du cristal

n’est obtenue qu’en employant la méthode de Monte Carlo. Afin d’obtenir une description

réaliste, des paramètres réalistes doivent être employés pour les simulations. Nous avons

montré que, dans les cristaux réels, des paramètres importants comment le coefficient

d’atténuation, la taille des cristallites et la forme de la distribution de mosäıcité peuvent

être différents de ceux prévus. Nous avons rapporté leurs valeurs ”réelles” (obtenues

à partir des expériences) dans certains cas et avons prouvé que leur connaissance est

importante pour décrire la performance du cristal, et par conséquent de l’instrument de

neutrons.



Appendix A

Appendix - Formal treatment of the

dynamical theory of diffraction

For an infinite perfect crystal, the average of the coherent scattering length determining

the optical potential in Eq. (2.17) is given by:

〈b (r)〉 = b
∑
h

F̃he
−iKh·r (A.1)

where b is the average bound coherent scattering length and F̃h = Fh/F0 is the normalised

structure factor. The optical potential can then be written as:

v (r) = v0

∑
h

F̃he
−iKh·r (A.2)

where v0 = 2πh̄2

m
ρb is the average value of v (r) within a unit cell. The solution of the

Schrödinger equation (2.16) is a superposition of plane waves outside the crystal

ψ (r) =
∑

aeik·r (A.3)

with E = (h̄k)2/2m, and a superposition of Bloch waves inside the crystal

ψ (r) =
∑

A (r) eiK·r. (A.4)

Since A (r) has the lattice periodicity, it can be expanded in the form

A (r) =
∑
h

Ahe
−iKh·r (A.5)

and the coefficients Ah satisfy the equations:

DhAh = ξ
∑
h′
F̃h−h′Ah′ (A.6)

where h−h′ corresponds to a reciprocal lattice vector Kh−h′ = Kh−Kh′ and the Dh and

ξ coefficients are given by:
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Dh = 1 − (K −Kh)
2

k2
(A.7)

ξ =
v0

E
=

4π

k2
ρb. (A.8)

The solution of Eq. (A.6) determines the dispersion surface K = K (k) and the allowed

values of K, called tie points are calculated by applying the boundary conditions. At

thermal neutron energies, the parameter ξ is very small. We have K = k [1 +O (ξ)],

then:

Dh =
2k · Kh −K2

h

k2
+O (ξ) (A.9)

and:

DhAh = O (ξ) (A.10)

Eqs. (A.9) and (A.10) show that for h = 0 and h such that the Bragg law is satisfied,

2k · Kh = K2
h, Dh = O (ξ) and Ah = O (1). For cases in which the Bragg law is not

satisfied Dh = O (1) and Ah = O (ξ). This means that the nature of the solution depends

on the number of reciprocal lattice vectors Kh for which the Bragg law is simultaneously

satisfied for a given incident wave vector k.

If the Bragg law is not satisfied for any Kh, then D0 = ξ and we have the so-called

one-wave solution:

ψ (r) = A0

∑
eiK·r + ξ

∑
h �=0

F̃h
Dh

ei(K−Kh)·r +O
(
ξ2
) (A.11)

Thus, ψ (r) is the superposition of the internal transmitted wave, with wave vector K,

plus a Bragg reflected wave, with wave vector K − Kh, from each reciprocal lattice site

with h �= 0. This is one of the main aspects of the dynamical theory: since the crystal

refractive index differs from that of the surrounding medium, n = K/k ∼ 1 − ξ2 , all

possible Bragg reflections are excited, with an amplitude of the order of ξ relative to that

of the transmitted wave. The intensity of each component of the Bragg reflected wave is

∼ ξ2, so it is negligible and we can write:

ψ (r) = A0

∑
eiK·r (A.12)

If the Bragg condition is satisfied for only one value Kh of the reciprocal lattice vector,

the Eq. (A.6) becomes:

Dh′Ah′ = ξ
(
F̃h′A0 + F̃h′−hAh

)
+O

(
ξ2
)

(A.13)

The last equation is valid for h′ = 0, h and can be re-written as:
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(D0 − ξ)A0 − ξF̃−hAh = 0 (A.14)

−ξF̃hA0 + (Dh − ξ)Ah = 0

These equations describe the multiple Bragg reflections in a perfect crystal in the two

wave case. They have a solution if:

(D0 − ξ) (Dh − ξ) − ξ2F̃hF̃−h = 0 (A.15)

Then:

X =
Ah
A0

=
D0 − ξ

ξF̃−h
=

ξF̃h
Dh − ξ

(A.16)

and the coherent wave can be written as:

ψ (r) = A0

∑
eiK·r +Xei(K−Kh)·r + ξ

∑
h′ �=0,h

F̃h′ +XF̃h′−h
Dh′

ei(K−Kh′)·r +O
(
ξ2
) (A.17)

As in the one-wave case, the terms proportional to ξ are negligible and only the reflected

wave having h = h′ is of the same order of the transmitted wave, so we can write:

ψ (r) = A0

∑(
eiK·r +XeiK

′ ·r
)

(A.18)

with:

K
′
= K − Kh (A.19)

The last equation implies that:

Dh = αD0 + ξβ (A.20)

with:

α = 1 − Khz

kz
(A.21)

β =
2k · Kh −K2

h

ξk2

where we have assumed that the crystal incidence surface lies in the z = 0 plane.

We can write the refractive indices for the internal transmitted and reflected waves as:

n2 = 1 −D0 (A.22)

n
′2 = 1 −Dh

The solution of the dispersion equation (A.15) is:

D0± = ξ
[
1 + γ ±

(
γ2 + δ

) 1
2

]
(A.23)
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Dh± = αξ
[
1 + γ ±

(
γ2 + δ

) 1
2

]
+ β (A.24)

with:

γ =
1 − α− β

2α
(A.25)

δ =
F̃hF̃−h
α

Eqs. (A.23) and (A.24) show that both D0 and Dh have two possible solutions, then the

coherent wave is the superposition of four plane waves:

ψ (r) = A+

(
eiK+·r +X+e

iK
′
+·r
)

+ A−
(
eiK−·r +X−eiK

′
−·r
)

(A.26)

where:

K± = k − k2

2kz
D0±ẑ (A.27)

K
′
± = K± − Kh

Eq. (A.26) shows that, due to refraction in the crystal, the refractive indices for the

transmitted and reflected waves are double valued, then there are four waves propagating

in the crystal. This is the essential difference between the dynamical theory and the

kinematical theory, in which refraction is neglected and there is no distinction between

the internal and external waves. According to the dynamical theory, the external incident

wave produces two internal transmitted waves with wave vectors K± and two reflected

waves with K
′
±.

The behaviour of the coherent wave is known, provided that the coefficients A± are

determined. In order to do this, one has to write the boundary conditions. The crystal

shape for which the boundary problem can easily be solved is that of a slab of thickness

d. If we neglect the finite length, this is also the shape of crystals commonly used as

monochromators. The approximation is good if the real length is much larger than the

thickness. Another approximation lies in omitting the effect of partial reflection and

refraction of the incident wave. This effect is appreciable only at very small grazing

angles of the order of 0.2o or less, then the approximation is good. In order to solve the

boundary problem, we will choose the z = 0 plane as the entrance crystal surface and the

z = d plane as the crystal exit surface for the transmitted beam. The internal wave is

described by the Eq. (A.26), and the external one will be:

ψ (r) =


 aeik·r if z < 0

a′eik
′·r + a′′eik

′′·r if z > d
(A.28)

for the Laue or transmission geometry and:
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ψ (r) =


 aeik·r + a′eik

′·r if z < 0

a′′eik
′′·r if z > d

(A.29)

for the Bragg or reflection geometry.

The rigorous boundary conditions would require that both ψ (r) and ∇ψ (r) be continuous

at the crystal surface, but since we neglect reflection at boundary, the condition on ∇ψ (r)

can be neglected and the continuity of ψ (r) at z = 0 and z = d gives:

k′ = k −Kh − ξ
β

α

k2

2kz
ẑ (A.30)

k′′ = k

and the amplitudes for the Laue case are:

A+ = − X−
X+ −X−

a (A.31)

A− =
X+

X+ −X−
a

a′ = −X+X−
Y+ − Y−
X+ −X−

aeiξ
β
α

k2

2kz
d

a′′ =
X+Y− −X−Y+

X+ −X−
a

In the Bragg geometry we have:

A+ = − X−Y−
X+Y+ −X−Y−

a (A.32)

A− =
X+Y+

X+Y+ −X−Y−
a

a′ = X+X−
Y+ − Y−

X+Y+ −X−Y−
a

a′′ = Y+Y−
X+ −X−

X+Y+ −X−Y−
a

with Y± = e−i
k2

2kz
D0±d.

In both Laue and Bragg case the reflectivity and the transmissivity are given by:

R = |α||a
′

a
|2 (A.33)

T = |a
′′

a
|2 (A.34)

where |α| = sinφ
′

sinφ
is the asymmetry factor which depends on the incoming and outcoming

angles φ and φ
′
. The explicit form of the solutions is:
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RLaue = |α||X+X−
Y+ − Y−
X+ −X−

|2 (A.35)

TLaue = |X+Y− −X−Y+

X+ −X−
|2 (A.36)

RBragg = |α||X+X−
Y+ − Y−

X+Y+ −X−Y−
|2 (A.37)

TBragg = |Y+Y−
X+ −X−

X+Y+ −X−Y−
|2 (A.38)

Case of zero absorption. In this case b is real and F ∗
hkl = Fh̄k̄l̄, then the quantities α, β,

γ and δ are real. From Eqs. (A.35) it follows that:

R+ T = 1 (A.39)

R (x, y)Laue =
sin2

(
x
√
y2 + 1

)
y2 + 1

(A.40)

R (x, y)Bragg =




sinh2
(
x
√

1−y2
)

1−y2+sinh2

(
x
√

1−y2
) if y2 < 1

sin2

(
x
√
y2−1

)
y2−1+sin2

(
x
√
y2−1

) if y2 > 1

(A.41)

where y2 = γ2

|δ| and x2 =
(
ξk2d
2kkz

)2 |δ|. In the case where we want to calculate the diffraction

profile as a function of the crystal angle, we have that y is related to the deviation from

the Bragg angle θh and x to the ratio between the crystal thickness and the primary

extinction depth:

y =
θ − θh
χh

+ ψh (A.42)

x =
πd

th

In symmetric geometry we have:

ψh =


 0 Laue case

±|F̃h|−1 Bragg case
(A.43)

th =
πV0

λ|Fh|
√

sinφ sinφ′ (A.44)

χh =
λ2|Fh|

πV0 sin 2θh

√
sinφ′

sin φ
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For both Laue and Bragg geometry the reflectivity is an even function of y, but only in

the Bragg symmetric geometry it also is a symmetric function of (θ − θh). In all other

cases the rocking curve is not symmetric about the Bragg angle because ψh �= 0.

Thin crystals. If the crystal thickness is much smaller than the primary extinction depth,

i.e. if d � th, then the range of y values for which reflectivity is non zero is y � 1 and

we can neglect the ψh contribution in y and write, for both the Laue and Bragg cases:

R (x, y) =

(
sin xy

y

)2

(A.45)

Thick crystals. If the crystal is thick, i.e. d � th, the reflectivity is non zero in a small

interval |y| ≤ 1, or |θ − θh| ≤ χh ∼ 10−6 rad. R (x, y) has a very narrow peak and

oscillates very rapidly as a function of y. By performing averages on these oscillations,

one can retrieve what would be the measured reflectivity profile of a perfect crystal. The

result is that for x � 1, in the Bragg geometry, the reflectivity is equal to 1 for |y| ≤ 1.

This peak width is called the Darwin width. In the Laue case the reflectivity has a

Lorentzian shape with a peak equal to 0.5.
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[2] M. Sánchez del Ŕıo and R.J. Dejus, “XOP: Recent developments”, SPIE proceedings

3448, pp. 340-345, 1998.
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